evilfreelancer
commited on
Upload 14 files
Browse files- 1_Pooling/config.json +10 -0
- README.md +180 -0
- config.json +31 -0
- config_sentence_transformers.json +9 -0
- eval.png +0 -0
- eval/mse_evaluation_talks-en-ru-dev.tsv.gz_results.csv +121 -0
- eval/translation_evaluation_talks-en-ru-dev.tsv.gz_results.csv +121 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +62 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sentence-transformers
|
3 |
+
pipeline_tag: sentence-similarity
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- feature-extraction
|
7 |
+
- sentence-similarity
|
8 |
+
- transformers
|
9 |
+
---
|
10 |
+
|
11 |
+
# Enbeddrus v0.1 PC - English and Russian embedder
|
12 |
+
|
13 |
+
> This is the model trained on Parallel Corpora only
|
14 |
+
|
15 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional
|
16 |
+
dense vector space and can be used for tasks like clustering or semantic search.
|
17 |
+
|
18 |
+
- **Parameters**: 168 million
|
19 |
+
- **Layers**: 12
|
20 |
+
- **Hidden Size**: 768
|
21 |
+
- **Attention Heads**: 12
|
22 |
+
- **Vocabulary Size**: 119,547
|
23 |
+
- **Maximum Sequence Length**: 512 tokens
|
24 |
+
|
25 |
+
The Enbeddrus model is designed to extract similar embeddings for comparable English and Russian phrases. It is based on
|
26 |
+
the [bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-cased) model and was
|
27 |
+
trained over 20 epochs on the following datasets:
|
28 |
+
|
29 |
+
- [evilfreelancer/opus-php-en-ru-cleaned](https://huggingface.co/datasets/evilfreelancer/opus-php-en-ru-cleaned) (
|
30 |
+
train): 1.6k lines
|
31 |
+
- [Helsinki-NLP/opus_books](https://huggingface.co/datasets/Helsinki-NLP/opus_books/viewer/en-ru) (en-ru, train): 17.5k
|
32 |
+
lines
|
33 |
+
|
34 |
+
The goal of this model is to generate identical or very similar embeddings regardless of whether the text is written in
|
35 |
+
English or Russian.
|
36 |
+
|
37 |
+
## Usage (Sentence-Transformers)
|
38 |
+
|
39 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
40 |
+
|
41 |
+
```
|
42 |
+
pip install -U sentence-transformers
|
43 |
+
```
|
44 |
+
|
45 |
+
Then you can use the model like this:
|
46 |
+
|
47 |
+
```python
|
48 |
+
from sentence_transformers import SentenceTransformer
|
49 |
+
|
50 |
+
sentences = [
|
51 |
+
"PHP является скриптовым языком программирования, широко используемым для веб-разработки.",
|
52 |
+
"PHP is a scripting language widely used for web development.",
|
53 |
+
"PHP поддерживает множество баз данных, таких как MySQL, PostgreSQL и SQLite.",
|
54 |
+
"PHP supports many databases like MySQL, PostgreSQL, and SQLite.",
|
55 |
+
"Функция echo в PHP используется для вывода текста на экран.",
|
56 |
+
"The echo function in PHP is used to output text to the screen.",
|
57 |
+
"Машинное обучение помогает создавать интеллектуальные системы.",
|
58 |
+
"Machine learning helps to create intelligent systems.",
|
59 |
+
]
|
60 |
+
|
61 |
+
model = SentenceTransformer('evilfreelancer/enbeddrus')
|
62 |
+
embeddings = model.encode(sentences)
|
63 |
+
print(embeddings)
|
64 |
+
```
|
65 |
+
|
66 |
+
## Usage (HuggingFace Transformers)
|
67 |
+
|
68 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input
|
69 |
+
through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word
|
70 |
+
embeddings.
|
71 |
+
|
72 |
+
```python
|
73 |
+
from transformers import AutoTokenizer, AutoModel
|
74 |
+
import torch
|
75 |
+
|
76 |
+
|
77 |
+
# Mean Pooling - Take attention mask into account for correct averaging
|
78 |
+
def mean_pooling(model_output, attention_mask):
|
79 |
+
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
|
80 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
81 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
82 |
+
|
83 |
+
|
84 |
+
# Sentences we want sentence embeddings for
|
85 |
+
sentences = [
|
86 |
+
"PHP является скриптовым языком программирования, широко используемым для веб-разработки.",
|
87 |
+
"PHP is a scripting language widely used for web development.",
|
88 |
+
"PHP поддерживает множество баз данных, таких как MySQL, PostgreSQL и SQLite.",
|
89 |
+
"PHP supports many databases like MySQL, PostgreSQL, and SQLite.",
|
90 |
+
"Функция echo в PHP используется для вывода текста на экран.",
|
91 |
+
"The echo function in PHP is used to output text to the screen.",
|
92 |
+
"Машинное обучение помогает создавать интеллектуальные системы.",
|
93 |
+
"Machine learning helps to create intelligent systems.",
|
94 |
+
]
|
95 |
+
|
96 |
+
# Load model from HuggingFace Hub
|
97 |
+
tokenizer = AutoTokenizer.from_pretrained('evilfreelancer/enbeddrus')
|
98 |
+
model = AutoModel.from_pretrained('evilfreelancer/enbeddrus')
|
99 |
+
|
100 |
+
# Tokenize sentences
|
101 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
102 |
+
|
103 |
+
# Compute token embeddings
|
104 |
+
with torch.no_grad():
|
105 |
+
model_output = model(**encoded_input)
|
106 |
+
|
107 |
+
# Perform pooling. In this case, mean pooling.
|
108 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
109 |
+
|
110 |
+
print("Sentence embeddings:")
|
111 |
+
print(sentence_embeddings)
|
112 |
+
```
|
113 |
+
|
114 |
+
## Evaluation Results
|
115 |
+
|
116 |
+
The model was tested on the `eval` split of the
|
117 |
+
dataset [evilfreelancer/opus-php-en-ru-cleaned](https://huggingface.co/datasets/evilfreelancer/opus-php-en-ru-cleaned),
|
118 |
+
which contains 100 pairs of sentences in Russian and English on the topic of PHP. The results of the testing are
|
119 |
+
presented in the image below.
|
120 |
+
|
121 |
+
![Evaluation Results](./eval.png)
|
122 |
+
|
123 |
+
* **Left**: Embedding similarity in Russian and English before training
|
124 |
+
(the points are spread out into two distinct clusters).
|
125 |
+
* **Center**: Embedding similarity after training
|
126 |
+
(the points representing similar phrases are very close to each other).
|
127 |
+
* **Right**: Cosine distance before and after training.
|
128 |
+
|
129 |
+
## Training
|
130 |
+
|
131 |
+
The model was trained with the parameters:
|
132 |
+
|
133 |
+
**DataLoader**:
|
134 |
+
|
135 |
+
`torch.utils.data.dataloader.DataLoader` of length 556 with parameters:
|
136 |
+
|
137 |
+
```python
|
138 |
+
{
|
139 |
+
'batch_size': 64,
|
140 |
+
'sampler': 'torch.utils.data.sampler.RandomSampler',
|
141 |
+
'batch_sampler': 'torch.utils.data.sampler.BatchSampler'
|
142 |
+
}
|
143 |
+
```
|
144 |
+
|
145 |
+
**Loss**:
|
146 |
+
|
147 |
+
`sentence_transformers.losses.MSELoss.MSELoss`
|
148 |
+
|
149 |
+
Parameters of the fit()-Method:
|
150 |
+
|
151 |
+
```
|
152 |
+
{
|
153 |
+
"epochs": 20,
|
154 |
+
"evaluation_steps": 100,
|
155 |
+
"evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
|
156 |
+
"max_grad_norm": 1,
|
157 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
158 |
+
"optimizer_params": {
|
159 |
+
"eps": 1e-06,
|
160 |
+
"lr": 2e-05
|
161 |
+
},
|
162 |
+
"scheduler": "WarmupLinear",
|
163 |
+
"steps_per_epoch": null,
|
164 |
+
"warmup_steps": 10000,
|
165 |
+
"weight_decay": 0.01
|
166 |
+
}
|
167 |
+
```
|
168 |
+
|
169 |
+
## Full Model Architecture
|
170 |
+
|
171 |
+
```
|
172 |
+
SentenceTransformer(
|
173 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
174 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
175 |
+
)
|
176 |
+
```
|
177 |
+
|
178 |
+
## Citing & Authors
|
179 |
+
|
180 |
+
<!--- Describe where people can find more information -->
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./output/enbeddrus_domain",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"directionality": "bidi",
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"pooler_fc_size": 768,
|
21 |
+
"pooler_num_attention_heads": 12,
|
22 |
+
"pooler_num_fc_layers": 3,
|
23 |
+
"pooler_size_per_head": 128,
|
24 |
+
"pooler_type": "first_token_transform",
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.40.2",
|
28 |
+
"type_vocab_size": 2,
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 105879
|
31 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.7.0",
|
4 |
+
"transformers": "4.40.2",
|
5 |
+
"pytorch": "2.3.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null
|
9 |
+
}
|
eval.png
ADDED
eval/mse_evaluation_talks-en-ru-dev.tsv.gz_results.csv
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,MSE
|
2 |
+
0,100,10.387847572565079
|
3 |
+
0,200,9.86761674284935
|
4 |
+
0,300,9.120597690343857
|
5 |
+
0,400,8.35539773106575
|
6 |
+
0,500,7.655713707208633
|
7 |
+
0,-1,7.338091731071472
|
8 |
+
1,100,6.162974983453751
|
9 |
+
1,200,5.53399957716465
|
10 |
+
1,300,5.004849284887314
|
11 |
+
1,400,4.520170763134956
|
12 |
+
1,500,4.106686636805534
|
13 |
+
1,-1,3.9841126650571823
|
14 |
+
2,100,3.6872930824756622
|
15 |
+
2,200,3.44105027616024
|
16 |
+
2,300,3.2708097249269485
|
17 |
+
2,400,3.0513660982251167
|
18 |
+
2,500,2.870635688304901
|
19 |
+
2,-1,2.7876438573002815
|
20 |
+
3,100,2.6700804010033607
|
21 |
+
3,200,2.546677738428116
|
22 |
+
3,300,2.4392174556851387
|
23 |
+
3,400,2.3880528286099434
|
24 |
+
3,500,2.31433417648077
|
25 |
+
3,-1,2.2802533581852913
|
26 |
+
4,100,2.2168152034282684
|
27 |
+
4,200,2.1714042872190475
|
28 |
+
4,300,2.1294882521033287
|
29 |
+
4,400,2.094305120408535
|
30 |
+
4,500,2.0370664075016975
|
31 |
+
4,-1,2.0246170461177826
|
32 |
+
5,100,2.0074699074029922
|
33 |
+
5,200,1.9568240270018578
|
34 |
+
5,300,1.9343534484505653
|
35 |
+
5,400,1.898401603102684
|
36 |
+
5,500,1.8790734931826591
|
37 |
+
5,-1,1.8960969522595406
|
38 |
+
6,100,1.8495647236704826
|
39 |
+
6,200,1.8361380323767662
|
40 |
+
6,300,1.8119128420948982
|
41 |
+
6,400,1.808309368789196
|
42 |
+
6,500,1.7959684133529663
|
43 |
+
6,-1,1.7735589295625687
|
44 |
+
7,100,1.7616048455238342
|
45 |
+
7,200,1.7485374584794044
|
46 |
+
7,300,1.7368398606777191
|
47 |
+
7,400,1.7239836975932121
|
48 |
+
7,500,1.6941288486123085
|
49 |
+
7,-1,1.6788296401500702
|
50 |
+
8,100,1.6896054148674011
|
51 |
+
8,200,1.6750071197748184
|
52 |
+
8,300,1.6543004661798477
|
53 |
+
8,400,1.6510825604200363
|
54 |
+
8,500,1.6183236613869667
|
55 |
+
8,-1,1.6258953139185905
|
56 |
+
9,100,1.6203954815864563
|
57 |
+
9,200,1.6064176335930824
|
58 |
+
9,300,1.5877032652497292
|
59 |
+
9,400,1.594270020723343
|
60 |
+
9,500,1.5924764797091484
|
61 |
+
9,-1,1.5786411240696907
|
62 |
+
10,100,1.5770653262734413
|
63 |
+
10,200,1.550190057605505
|
64 |
+
10,300,1.5557215549051762
|
65 |
+
10,400,1.5478377230465412
|
66 |
+
10,500,1.53389573097229
|
67 |
+
10,-1,1.5464226715266705
|
68 |
+
11,100,1.5201290138065815
|
69 |
+
11,200,1.521117053925991
|
70 |
+
11,300,1.5080863609910011
|
71 |
+
11,400,1.5010199509561062
|
72 |
+
11,500,1.501933578401804
|
73 |
+
11,-1,1.494067721068859
|
74 |
+
12,100,1.4922548085451126
|
75 |
+
12,200,1.5047299675643444
|
76 |
+
12,300,1.4688256196677685
|
77 |
+
12,400,1.4845688827335835
|
78 |
+
12,500,1.4618145301938057
|
79 |
+
12,-1,1.4620558358728886
|
80 |
+
13,100,1.462116278707981
|
81 |
+
13,200,1.4583625830709934
|
82 |
+
13,300,1.4507200568914413
|
83 |
+
13,400,1.4375234954059124
|
84 |
+
13,500,1.4326025731861591
|
85 |
+
13,-1,1.4305923134088516
|
86 |
+
14,100,1.419608574360609
|
87 |
+
14,200,1.4264494180679321
|
88 |
+
14,300,1.4211633242666721
|
89 |
+
14,400,1.4133354648947716
|
90 |
+
14,500,1.4246515929698944
|
91 |
+
14,-1,1.4119409956037998
|
92 |
+
15,100,1.4064767397940159
|
93 |
+
15,200,1.4039582572877407
|
94 |
+
15,300,1.3883032836019993
|
95 |
+
15,400,1.3942951336503029
|
96 |
+
15,500,1.385231874883175
|
97 |
+
15,-1,1.3819151557981968
|
98 |
+
16,100,1.3912687078118324
|
99 |
+
16,200,1.3699814677238464
|
100 |
+
16,300,1.413984689861536
|
101 |
+
16,400,1.3735463842749596
|
102 |
+
16,500,1.3753779232501984
|
103 |
+
16,-1,1.3813098892569542
|
104 |
+
17,100,1.3768729753792286
|
105 |
+
17,200,1.3731478713452816
|
106 |
+
17,300,1.3841950334608555
|
107 |
+
17,400,1.3581447303295135
|
108 |
+
17,500,1.3539798557758331
|
109 |
+
17,-1,1.3513457030057907
|
110 |
+
18,100,1.3624225743114948
|
111 |
+
18,200,1.3440818525850773
|
112 |
+
18,300,1.3474151492118835
|
113 |
+
18,400,1.3462526723742485
|
114 |
+
18,500,1.348408032208681
|
115 |
+
18,-1,1.343551930040121
|
116 |
+
19,100,1.3368207029998302
|
117 |
+
19,200,1.3246512971818447
|
118 |
+
19,300,1.3250414282083511
|
119 |
+
19,400,1.3333231210708618
|
120 |
+
19,500,1.3302416540682316
|
121 |
+
19,-1,1.3309257104992867
|
eval/translation_evaluation_talks-en-ru-dev.tsv.gz_results.csv
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,src2trg,trg2src
|
2 |
+
0,100,0.797,0.683
|
3 |
+
0,200,0.803,0.697
|
4 |
+
0,300,0.814,0.698
|
5 |
+
0,400,0.82,0.693
|
6 |
+
0,500,0.825,0.677
|
7 |
+
0,-1,0.823,0.666
|
8 |
+
1,100,0.823,0.635
|
9 |
+
1,200,0.797,0.639
|
10 |
+
1,300,0.763,0.608
|
11 |
+
1,400,0.724,0.55
|
12 |
+
1,500,0.696,0.524
|
13 |
+
1,-1,0.698,0.527
|
14 |
+
2,100,0.698,0.523
|
15 |
+
2,200,0.705,0.531
|
16 |
+
2,300,0.718,0.54
|
17 |
+
2,400,0.741,0.558
|
18 |
+
2,500,0.754,0.559
|
19 |
+
2,-1,0.766,0.57
|
20 |
+
3,100,0.771,0.581
|
21 |
+
3,200,0.776,0.591
|
22 |
+
3,300,0.78,0.606
|
23 |
+
3,400,0.784,0.608
|
24 |
+
3,500,0.793,0.619
|
25 |
+
3,-1,0.794,0.631
|
26 |
+
4,100,0.801,0.64
|
27 |
+
4,200,0.805,0.644
|
28 |
+
4,300,0.817,0.66
|
29 |
+
4,400,0.815,0.658
|
30 |
+
4,500,0.821,0.666
|
31 |
+
4,-1,0.823,0.666
|
32 |
+
5,100,0.825,0.67
|
33 |
+
5,200,0.826,0.681
|
34 |
+
5,300,0.832,0.693
|
35 |
+
5,400,0.831,0.693
|
36 |
+
5,500,0.832,0.686
|
37 |
+
5,-1,0.829,0.691
|
38 |
+
6,100,0.828,0.7
|
39 |
+
6,200,0.836,0.701
|
40 |
+
6,300,0.837,0.709
|
41 |
+
6,400,0.831,0.712
|
42 |
+
6,500,0.836,0.718
|
43 |
+
6,-1,0.842,0.725
|
44 |
+
7,100,0.838,0.735
|
45 |
+
7,200,0.836,0.735
|
46 |
+
7,300,0.835,0.736
|
47 |
+
7,400,0.841,0.743
|
48 |
+
7,500,0.845,0.754
|
49 |
+
7,-1,0.846,0.751
|
50 |
+
8,100,0.847,0.757
|
51 |
+
8,200,0.851,0.76
|
52 |
+
8,300,0.852,0.768
|
53 |
+
8,400,0.855,0.763
|
54 |
+
8,500,0.853,0.775
|
55 |
+
8,-1,0.847,0.774
|
56 |
+
9,100,0.852,0.772
|
57 |
+
9,200,0.854,0.78
|
58 |
+
9,300,0.855,0.779
|
59 |
+
9,400,0.86,0.778
|
60 |
+
9,500,0.853,0.78
|
61 |
+
9,-1,0.857,0.781
|
62 |
+
10,100,0.855,0.781
|
63 |
+
10,200,0.861,0.781
|
64 |
+
10,300,0.856,0.786
|
65 |
+
10,400,0.862,0.793
|
66 |
+
10,500,0.864,0.79
|
67 |
+
10,-1,0.868,0.789
|
68 |
+
11,100,0.864,0.798
|
69 |
+
11,200,0.867,0.789
|
70 |
+
11,300,0.863,0.791
|
71 |
+
11,400,0.871,0.798
|
72 |
+
11,500,0.868,0.794
|
73 |
+
11,-1,0.87,0.799
|
74 |
+
12,100,0.868,0.801
|
75 |
+
12,200,0.869,0.798
|
76 |
+
12,300,0.873,0.799
|
77 |
+
12,400,0.878,0.796
|
78 |
+
12,500,0.879,0.801
|
79 |
+
12,-1,0.876,0.8
|
80 |
+
13,100,0.876,0.808
|
81 |
+
13,200,0.877,0.802
|
82 |
+
13,300,0.879,0.813
|
83 |
+
13,400,0.876,0.813
|
84 |
+
13,500,0.875,0.813
|
85 |
+
13,-1,0.878,0.813
|
86 |
+
14,100,0.88,0.817
|
87 |
+
14,200,0.882,0.814
|
88 |
+
14,300,0.885,0.813
|
89 |
+
14,400,0.883,0.82
|
90 |
+
14,500,0.884,0.822
|
91 |
+
14,-1,0.884,0.822
|
92 |
+
15,100,0.888,0.826
|
93 |
+
15,200,0.886,0.829
|
94 |
+
15,300,0.889,0.828
|
95 |
+
15,400,0.89,0.831
|
96 |
+
15,500,0.887,0.83
|
97 |
+
15,-1,0.887,0.831
|
98 |
+
16,100,0.89,0.834
|
99 |
+
16,200,0.894,0.83
|
100 |
+
16,300,0.893,0.835
|
101 |
+
16,400,0.895,0.826
|
102 |
+
16,500,0.895,0.837
|
103 |
+
16,-1,0.893,0.835
|
104 |
+
17,100,0.897,0.835
|
105 |
+
17,200,0.897,0.838
|
106 |
+
17,300,0.899,0.844
|
107 |
+
17,400,0.899,0.841
|
108 |
+
17,500,0.9,0.84
|
109 |
+
17,-1,0.893,0.841
|
110 |
+
18,100,0.897,0.843
|
111 |
+
18,200,0.897,0.839
|
112 |
+
18,300,0.903,0.844
|
113 |
+
18,400,0.903,0.843
|
114 |
+
18,500,0.897,0.84
|
115 |
+
18,-1,0.896,0.842
|
116 |
+
19,100,0.901,0.844
|
117 |
+
19,200,0.902,0.841
|
118 |
+
19,300,0.9,0.847
|
119 |
+
19,400,0.902,0.845
|
120 |
+
19,500,0.902,0.849
|
121 |
+
19,-1,0.902,0.848
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83c3698a48afbd81bd2adc14c418ca3531094d1da72313b9f9aefb74619b4a5b
|
3 |
+
size 669448040
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"max_length": 350,
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_to_multiple_of": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"pad_token_type_id": 0,
|
53 |
+
"padding_side": "right",
|
54 |
+
"sep_token": "[SEP]",
|
55 |
+
"stride": 0,
|
56 |
+
"strip_accents": null,
|
57 |
+
"tokenize_chinese_chars": true,
|
58 |
+
"tokenizer_class": "BertTokenizer",
|
59 |
+
"truncation_side": "right",
|
60 |
+
"truncation_strategy": "longest_first",
|
61 |
+
"unk_token": "[UNK]"
|
62 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|