evilfreelancer commited on
Commit
479db56
·
verified ·
1 Parent(s): 307f603

Upload 14 files

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sentence-transformers
3
+ pipeline_tag: sentence-similarity
4
+ tags:
5
+ - sentence-transformers
6
+ - feature-extraction
7
+ - sentence-similarity
8
+ - transformers
9
+ ---
10
+
11
+ # Enbeddrus v0.1 PC - English and Russian embedder
12
+
13
+ > This is the model trained on Parallel Corpora only
14
+
15
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional
16
+ dense vector space and can be used for tasks like clustering or semantic search.
17
+
18
+ - **Parameters**: 168 million
19
+ - **Layers**: 12
20
+ - **Hidden Size**: 768
21
+ - **Attention Heads**: 12
22
+ - **Vocabulary Size**: 119,547
23
+ - **Maximum Sequence Length**: 512 tokens
24
+
25
+ The Enbeddrus model is designed to extract similar embeddings for comparable English and Russian phrases. It is based on
26
+ the [bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-cased) model and was
27
+ trained over 20 epochs on the following datasets:
28
+
29
+ - [evilfreelancer/opus-php-en-ru-cleaned](https://huggingface.co/datasets/evilfreelancer/opus-php-en-ru-cleaned) (
30
+ train): 1.6k lines
31
+ - [Helsinki-NLP/opus_books](https://huggingface.co/datasets/Helsinki-NLP/opus_books/viewer/en-ru) (en-ru, train): 17.5k
32
+ lines
33
+
34
+ The goal of this model is to generate identical or very similar embeddings regardless of whether the text is written in
35
+ English or Russian.
36
+
37
+ ## Usage (Sentence-Transformers)
38
+
39
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
40
+
41
+ ```
42
+ pip install -U sentence-transformers
43
+ ```
44
+
45
+ Then you can use the model like this:
46
+
47
+ ```python
48
+ from sentence_transformers import SentenceTransformer
49
+
50
+ sentences = [
51
+ "PHP является скриптовым языком программирования, широко используемым для веб-разработки.",
52
+ "PHP is a scripting language widely used for web development.",
53
+ "PHP поддерживает множество баз данных, таких как MySQL, PostgreSQL и SQLite.",
54
+ "PHP supports many databases like MySQL, PostgreSQL, and SQLite.",
55
+ "Функция echo в PHP используется для вывода текста на экран.",
56
+ "The echo function in PHP is used to output text to the screen.",
57
+ "Машинное обучение помогает создавать интеллектуальные системы.",
58
+ "Machine learning helps to create intelligent systems.",
59
+ ]
60
+
61
+ model = SentenceTransformer('evilfreelancer/enbeddrus')
62
+ embeddings = model.encode(sentences)
63
+ print(embeddings)
64
+ ```
65
+
66
+ ## Usage (HuggingFace Transformers)
67
+
68
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input
69
+ through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word
70
+ embeddings.
71
+
72
+ ```python
73
+ from transformers import AutoTokenizer, AutoModel
74
+ import torch
75
+
76
+
77
+ # Mean Pooling - Take attention mask into account for correct averaging
78
+ def mean_pooling(model_output, attention_mask):
79
+ token_embeddings = model_output[0] # First element of model_output contains all token embeddings
80
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
81
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
82
+
83
+
84
+ # Sentences we want sentence embeddings for
85
+ sentences = [
86
+ "PHP является скриптовым языком программирования, широко используемым для веб-разработки.",
87
+ "PHP is a scripting language widely used for web development.",
88
+ "PHP поддерживает множество баз данных, таких как MySQL, PostgreSQL и SQLite.",
89
+ "PHP supports many databases like MySQL, PostgreSQL, and SQLite.",
90
+ "Функция echo в PHP используется для вывода текста на экран.",
91
+ "The echo function in PHP is used to output text to the screen.",
92
+ "Машинное обучение помогает создавать интеллектуальные системы.",
93
+ "Machine learning helps to create intelligent systems.",
94
+ ]
95
+
96
+ # Load model from HuggingFace Hub
97
+ tokenizer = AutoTokenizer.from_pretrained('evilfreelancer/enbeddrus')
98
+ model = AutoModel.from_pretrained('evilfreelancer/enbeddrus')
99
+
100
+ # Tokenize sentences
101
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
102
+
103
+ # Compute token embeddings
104
+ with torch.no_grad():
105
+ model_output = model(**encoded_input)
106
+
107
+ # Perform pooling. In this case, mean pooling.
108
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
109
+
110
+ print("Sentence embeddings:")
111
+ print(sentence_embeddings)
112
+ ```
113
+
114
+ ## Evaluation Results
115
+
116
+ The model was tested on the `eval` split of the
117
+ dataset [evilfreelancer/opus-php-en-ru-cleaned](https://huggingface.co/datasets/evilfreelancer/opus-php-en-ru-cleaned),
118
+ which contains 100 pairs of sentences in Russian and English on the topic of PHP. The results of the testing are
119
+ presented in the image below.
120
+
121
+ ![Evaluation Results](./eval.png)
122
+
123
+ * **Left**: Embedding similarity in Russian and English before training
124
+ (the points are spread out into two distinct clusters).
125
+ * **Center**: Embedding similarity after training
126
+ (the points representing similar phrases are very close to each other).
127
+ * **Right**: Cosine distance before and after training.
128
+
129
+ ## Training
130
+
131
+ The model was trained with the parameters:
132
+
133
+ **DataLoader**:
134
+
135
+ `torch.utils.data.dataloader.DataLoader` of length 556 with parameters:
136
+
137
+ ```python
138
+ {
139
+ 'batch_size': 64,
140
+ 'sampler': 'torch.utils.data.sampler.RandomSampler',
141
+ 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'
142
+ }
143
+ ```
144
+
145
+ **Loss**:
146
+
147
+ `sentence_transformers.losses.MSELoss.MSELoss`
148
+
149
+ Parameters of the fit()-Method:
150
+
151
+ ```
152
+ {
153
+ "epochs": 20,
154
+ "evaluation_steps": 100,
155
+ "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
156
+ "max_grad_norm": 1,
157
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
158
+ "optimizer_params": {
159
+ "eps": 1e-06,
160
+ "lr": 2e-05
161
+ },
162
+ "scheduler": "WarmupLinear",
163
+ "steps_per_epoch": null,
164
+ "warmup_steps": 10000,
165
+ "weight_decay": 0.01
166
+ }
167
+ ```
168
+
169
+ ## Full Model Architecture
170
+
171
+ ```
172
+ SentenceTransformer(
173
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
174
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
175
+ )
176
+ ```
177
+
178
+ ## Citing & Authors
179
+
180
+ <!--- Describe where people can find more information -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./output/enbeddrus_domain",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "pooler_fc_size": 768,
21
+ "pooler_num_attention_heads": 12,
22
+ "pooler_num_fc_layers": 3,
23
+ "pooler_size_per_head": 128,
24
+ "pooler_type": "first_token_transform",
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.40.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 105879
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.7.0",
4
+ "transformers": "4.40.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
eval.png ADDED
eval/mse_evaluation_talks-en-ru-dev.tsv.gz_results.csv ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,MSE
2
+ 0,100,10.387847572565079
3
+ 0,200,9.86761674284935
4
+ 0,300,9.120597690343857
5
+ 0,400,8.35539773106575
6
+ 0,500,7.655713707208633
7
+ 0,-1,7.338091731071472
8
+ 1,100,6.162974983453751
9
+ 1,200,5.53399957716465
10
+ 1,300,5.004849284887314
11
+ 1,400,4.520170763134956
12
+ 1,500,4.106686636805534
13
+ 1,-1,3.9841126650571823
14
+ 2,100,3.6872930824756622
15
+ 2,200,3.44105027616024
16
+ 2,300,3.2708097249269485
17
+ 2,400,3.0513660982251167
18
+ 2,500,2.870635688304901
19
+ 2,-1,2.7876438573002815
20
+ 3,100,2.6700804010033607
21
+ 3,200,2.546677738428116
22
+ 3,300,2.4392174556851387
23
+ 3,400,2.3880528286099434
24
+ 3,500,2.31433417648077
25
+ 3,-1,2.2802533581852913
26
+ 4,100,2.2168152034282684
27
+ 4,200,2.1714042872190475
28
+ 4,300,2.1294882521033287
29
+ 4,400,2.094305120408535
30
+ 4,500,2.0370664075016975
31
+ 4,-1,2.0246170461177826
32
+ 5,100,2.0074699074029922
33
+ 5,200,1.9568240270018578
34
+ 5,300,1.9343534484505653
35
+ 5,400,1.898401603102684
36
+ 5,500,1.8790734931826591
37
+ 5,-1,1.8960969522595406
38
+ 6,100,1.8495647236704826
39
+ 6,200,1.8361380323767662
40
+ 6,300,1.8119128420948982
41
+ 6,400,1.808309368789196
42
+ 6,500,1.7959684133529663
43
+ 6,-1,1.7735589295625687
44
+ 7,100,1.7616048455238342
45
+ 7,200,1.7485374584794044
46
+ 7,300,1.7368398606777191
47
+ 7,400,1.7239836975932121
48
+ 7,500,1.6941288486123085
49
+ 7,-1,1.6788296401500702
50
+ 8,100,1.6896054148674011
51
+ 8,200,1.6750071197748184
52
+ 8,300,1.6543004661798477
53
+ 8,400,1.6510825604200363
54
+ 8,500,1.6183236613869667
55
+ 8,-1,1.6258953139185905
56
+ 9,100,1.6203954815864563
57
+ 9,200,1.6064176335930824
58
+ 9,300,1.5877032652497292
59
+ 9,400,1.594270020723343
60
+ 9,500,1.5924764797091484
61
+ 9,-1,1.5786411240696907
62
+ 10,100,1.5770653262734413
63
+ 10,200,1.550190057605505
64
+ 10,300,1.5557215549051762
65
+ 10,400,1.5478377230465412
66
+ 10,500,1.53389573097229
67
+ 10,-1,1.5464226715266705
68
+ 11,100,1.5201290138065815
69
+ 11,200,1.521117053925991
70
+ 11,300,1.5080863609910011
71
+ 11,400,1.5010199509561062
72
+ 11,500,1.501933578401804
73
+ 11,-1,1.494067721068859
74
+ 12,100,1.4922548085451126
75
+ 12,200,1.5047299675643444
76
+ 12,300,1.4688256196677685
77
+ 12,400,1.4845688827335835
78
+ 12,500,1.4618145301938057
79
+ 12,-1,1.4620558358728886
80
+ 13,100,1.462116278707981
81
+ 13,200,1.4583625830709934
82
+ 13,300,1.4507200568914413
83
+ 13,400,1.4375234954059124
84
+ 13,500,1.4326025731861591
85
+ 13,-1,1.4305923134088516
86
+ 14,100,1.419608574360609
87
+ 14,200,1.4264494180679321
88
+ 14,300,1.4211633242666721
89
+ 14,400,1.4133354648947716
90
+ 14,500,1.4246515929698944
91
+ 14,-1,1.4119409956037998
92
+ 15,100,1.4064767397940159
93
+ 15,200,1.4039582572877407
94
+ 15,300,1.3883032836019993
95
+ 15,400,1.3942951336503029
96
+ 15,500,1.385231874883175
97
+ 15,-1,1.3819151557981968
98
+ 16,100,1.3912687078118324
99
+ 16,200,1.3699814677238464
100
+ 16,300,1.413984689861536
101
+ 16,400,1.3735463842749596
102
+ 16,500,1.3753779232501984
103
+ 16,-1,1.3813098892569542
104
+ 17,100,1.3768729753792286
105
+ 17,200,1.3731478713452816
106
+ 17,300,1.3841950334608555
107
+ 17,400,1.3581447303295135
108
+ 17,500,1.3539798557758331
109
+ 17,-1,1.3513457030057907
110
+ 18,100,1.3624225743114948
111
+ 18,200,1.3440818525850773
112
+ 18,300,1.3474151492118835
113
+ 18,400,1.3462526723742485
114
+ 18,500,1.348408032208681
115
+ 18,-1,1.343551930040121
116
+ 19,100,1.3368207029998302
117
+ 19,200,1.3246512971818447
118
+ 19,300,1.3250414282083511
119
+ 19,400,1.3333231210708618
120
+ 19,500,1.3302416540682316
121
+ 19,-1,1.3309257104992867
eval/translation_evaluation_talks-en-ru-dev.tsv.gz_results.csv ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,src2trg,trg2src
2
+ 0,100,0.797,0.683
3
+ 0,200,0.803,0.697
4
+ 0,300,0.814,0.698
5
+ 0,400,0.82,0.693
6
+ 0,500,0.825,0.677
7
+ 0,-1,0.823,0.666
8
+ 1,100,0.823,0.635
9
+ 1,200,0.797,0.639
10
+ 1,300,0.763,0.608
11
+ 1,400,0.724,0.55
12
+ 1,500,0.696,0.524
13
+ 1,-1,0.698,0.527
14
+ 2,100,0.698,0.523
15
+ 2,200,0.705,0.531
16
+ 2,300,0.718,0.54
17
+ 2,400,0.741,0.558
18
+ 2,500,0.754,0.559
19
+ 2,-1,0.766,0.57
20
+ 3,100,0.771,0.581
21
+ 3,200,0.776,0.591
22
+ 3,300,0.78,0.606
23
+ 3,400,0.784,0.608
24
+ 3,500,0.793,0.619
25
+ 3,-1,0.794,0.631
26
+ 4,100,0.801,0.64
27
+ 4,200,0.805,0.644
28
+ 4,300,0.817,0.66
29
+ 4,400,0.815,0.658
30
+ 4,500,0.821,0.666
31
+ 4,-1,0.823,0.666
32
+ 5,100,0.825,0.67
33
+ 5,200,0.826,0.681
34
+ 5,300,0.832,0.693
35
+ 5,400,0.831,0.693
36
+ 5,500,0.832,0.686
37
+ 5,-1,0.829,0.691
38
+ 6,100,0.828,0.7
39
+ 6,200,0.836,0.701
40
+ 6,300,0.837,0.709
41
+ 6,400,0.831,0.712
42
+ 6,500,0.836,0.718
43
+ 6,-1,0.842,0.725
44
+ 7,100,0.838,0.735
45
+ 7,200,0.836,0.735
46
+ 7,300,0.835,0.736
47
+ 7,400,0.841,0.743
48
+ 7,500,0.845,0.754
49
+ 7,-1,0.846,0.751
50
+ 8,100,0.847,0.757
51
+ 8,200,0.851,0.76
52
+ 8,300,0.852,0.768
53
+ 8,400,0.855,0.763
54
+ 8,500,0.853,0.775
55
+ 8,-1,0.847,0.774
56
+ 9,100,0.852,0.772
57
+ 9,200,0.854,0.78
58
+ 9,300,0.855,0.779
59
+ 9,400,0.86,0.778
60
+ 9,500,0.853,0.78
61
+ 9,-1,0.857,0.781
62
+ 10,100,0.855,0.781
63
+ 10,200,0.861,0.781
64
+ 10,300,0.856,0.786
65
+ 10,400,0.862,0.793
66
+ 10,500,0.864,0.79
67
+ 10,-1,0.868,0.789
68
+ 11,100,0.864,0.798
69
+ 11,200,0.867,0.789
70
+ 11,300,0.863,0.791
71
+ 11,400,0.871,0.798
72
+ 11,500,0.868,0.794
73
+ 11,-1,0.87,0.799
74
+ 12,100,0.868,0.801
75
+ 12,200,0.869,0.798
76
+ 12,300,0.873,0.799
77
+ 12,400,0.878,0.796
78
+ 12,500,0.879,0.801
79
+ 12,-1,0.876,0.8
80
+ 13,100,0.876,0.808
81
+ 13,200,0.877,0.802
82
+ 13,300,0.879,0.813
83
+ 13,400,0.876,0.813
84
+ 13,500,0.875,0.813
85
+ 13,-1,0.878,0.813
86
+ 14,100,0.88,0.817
87
+ 14,200,0.882,0.814
88
+ 14,300,0.885,0.813
89
+ 14,400,0.883,0.82
90
+ 14,500,0.884,0.822
91
+ 14,-1,0.884,0.822
92
+ 15,100,0.888,0.826
93
+ 15,200,0.886,0.829
94
+ 15,300,0.889,0.828
95
+ 15,400,0.89,0.831
96
+ 15,500,0.887,0.83
97
+ 15,-1,0.887,0.831
98
+ 16,100,0.89,0.834
99
+ 16,200,0.894,0.83
100
+ 16,300,0.893,0.835
101
+ 16,400,0.895,0.826
102
+ 16,500,0.895,0.837
103
+ 16,-1,0.893,0.835
104
+ 17,100,0.897,0.835
105
+ 17,200,0.897,0.838
106
+ 17,300,0.899,0.844
107
+ 17,400,0.899,0.841
108
+ 17,500,0.9,0.84
109
+ 17,-1,0.893,0.841
110
+ 18,100,0.897,0.843
111
+ 18,200,0.897,0.839
112
+ 18,300,0.903,0.844
113
+ 18,400,0.903,0.843
114
+ 18,500,0.897,0.84
115
+ 18,-1,0.896,0.842
116
+ 19,100,0.901,0.844
117
+ 19,200,0.902,0.841
118
+ 19,300,0.9,0.847
119
+ 19,400,0.902,0.845
120
+ 19,500,0.902,0.849
121
+ 19,-1,0.902,0.848
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83c3698a48afbd81bd2adc14c418ca3531094d1da72313b9f9aefb74619b4a5b
3
+ size 669448040
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 350,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff