rd211 commited on
Commit
237ade2
·
verified ·
1 Parent(s): de546bb

Merged model

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "eth-dl-rewards/internlm2-7b-mod",
3
+ "architectures": [
4
+ "InternLM2ForSequenceClassification"
5
+ ],
6
+ "attn_implementation": "eager",
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_internlm2.InternLM2Config",
9
+ "AutoModel": "eth-dl-rewards/internlm2-7b-mod--modeling_internlm2.InternLM2ForSequenceClassification",
10
+ "AutoModelForCausalLM": "eth-dl-rewards/internlm2-7b-mod--modeling_internlm2.InternLM2ForCausalLM"
11
+ },
12
+ "bias": false,
13
+ "bos_token_id": 1,
14
+ "eos_token_id": 2,
15
+ "hidden_act": "silu",
16
+ "hidden_size": 4096,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 14336,
19
+ "max_position_embeddings": 32768,
20
+ "model_type": "internlm2",
21
+ "num_attention_heads": 32,
22
+ "num_hidden_layers": 32,
23
+ "num_key_value_heads": 8,
24
+ "pad_token_id": 2,
25
+ "pretraining_tp": 1,
26
+ "rms_norm_eps": 1e-05,
27
+ "rope_scaling": null,
28
+ "rope_theta": 1000000,
29
+ "tie_word_embeddings": false,
30
+ "torch_dtype": "float32",
31
+ "transformers_version": "4.46.2",
32
+ "use_cache": true,
33
+ "vocab_size": 92544
34
+ }
configuration_internlm2.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """ InternLM2 model configuration"""
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.utils import logging
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+ INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
25
+
26
+
27
+ # Modified from transformers.model.llama.configuration_llama.LlamaConfig
28
+ class InternLM2Config(PretrainedConfig):
29
+ r"""
30
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
31
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
32
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
33
+
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information.
36
+
37
+
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 32000):
40
+ Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
41
+ `inputs_ids` passed when calling [`InternLM2Model`]
42
+ hidden_size (`int`, *optional*, defaults to 4096):
43
+ Dimension of the hidden representations.
44
+ intermediate_size (`int`, *optional*, defaults to 11008):
45
+ Dimension of the MLP representations.
46
+ num_hidden_layers (`int`, *optional*, defaults to 32):
47
+ Number of hidden layers in the Transformer decoder.
48
+ num_attention_heads (`int`, *optional*, defaults to 32):
49
+ Number of attention heads for each attention layer in the Transformer decoder.
50
+ num_key_value_heads (`int`, *optional*):
51
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
52
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
53
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
54
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
55
+ by meanpooling all the original heads within that group. For more details checkout [this
56
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
57
+ `num_attention_heads`.
58
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
59
+ The non-linear activation function (function or string) in the decoder.
60
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
61
+ The maximum sequence length that this model might ever be used with. InternLM2 supports up to 32768 tokens.
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ pad_token_id (`int`, *optional*):
70
+ Padding token id.
71
+ bos_token_id (`int`, *optional*, defaults to 1):
72
+ Beginning of stream token id.
73
+ eos_token_id (`int`, *optional*, defaults to 2):
74
+ End of stream token id.
75
+ pretraining_tp (`int`, *optional*, defaults to 1):
76
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
77
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism)
78
+ to understand more about it. This value is necessary to ensure exact reproducibility
79
+ of the pretraining results. Please refer to [this
80
+ issue](https://github.com/pytorch/pytorch/issues/76232).
81
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
82
+ Whether to tie weight embeddings
83
+ rope_theta (`float`, *optional*, defaults to 10000.0):
84
+ The base period of the RoPE embeddings.
85
+ rope_scaling (`Dict`, *optional*):
86
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
87
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
88
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
89
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
90
+ these scaling strategies behave:
91
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
92
+ experimental feature, subject to breaking API changes in future versions.
93
+ """
94
+ _auto_class = "AutoConfig"
95
+ model_type = "internlm2"
96
+ keys_to_ignore_at_inference = ["past_key_values"]
97
+
98
+ def __init__( # pylint: disable=W0102
99
+ self,
100
+ vocab_size=103168,
101
+ hidden_size=4096,
102
+ intermediate_size=11008,
103
+ num_hidden_layers=32,
104
+ num_attention_heads=32,
105
+ num_key_value_heads=None,
106
+ hidden_act="silu",
107
+ max_position_embeddings=2048,
108
+ initializer_range=0.02,
109
+ rms_norm_eps=1e-6,
110
+ use_cache=True,
111
+ pad_token_id=0,
112
+ bos_token_id=1,
113
+ eos_token_id=2,
114
+ pretraining_tp=1,
115
+ tie_word_embeddings=False,
116
+ bias=True,
117
+ rope_theta=10000,
118
+ rope_scaling=None,
119
+ attn_implementation=None,
120
+ **kwargs,
121
+ ):
122
+ self.vocab_size = vocab_size
123
+ self.max_position_embeddings = max_position_embeddings
124
+ self.hidden_size = hidden_size
125
+ self.intermediate_size = intermediate_size
126
+ self.num_hidden_layers = num_hidden_layers
127
+ self.num_attention_heads = num_attention_heads
128
+ self.bias = bias
129
+
130
+ if num_key_value_heads is None:
131
+ num_key_value_heads = num_attention_heads
132
+ self.num_key_value_heads = num_key_value_heads
133
+
134
+ self.hidden_act = hidden_act
135
+ self.initializer_range = initializer_range
136
+ self.rms_norm_eps = rms_norm_eps
137
+ self.pretraining_tp = pretraining_tp
138
+ self.use_cache = use_cache
139
+ self.rope_theta = rope_theta
140
+ self.rope_scaling = rope_scaling
141
+ self._rope_scaling_validation()
142
+ self.attn_implementation = attn_implementation
143
+ if self.attn_implementation is None:
144
+ self.attn_implementation = "eager"
145
+
146
+ super().__init__(
147
+ pad_token_id=pad_token_id,
148
+ bos_token_id=bos_token_id,
149
+ eos_token_id=eos_token_id,
150
+ tie_word_embeddings=tie_word_embeddings,
151
+ **kwargs,
152
+ )
153
+
154
+ def _rope_scaling_validation(self):
155
+ """
156
+ Validate the `rope_scaling` configuration.
157
+ """
158
+ if self.rope_scaling is None:
159
+ return
160
+
161
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
162
+ raise ValueError(
163
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
164
+ f"got {self.rope_scaling}"
165
+ )
166
+ rope_scaling_type = self.rope_scaling.get("type", None)
167
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
168
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
169
+ raise ValueError(
170
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
171
+ )
172
+ if (
173
+ rope_scaling_factor is None
174
+ or not isinstance(rope_scaling_factor, (float, int))
175
+ or rope_scaling_factor < 1.0
176
+ ):
177
+ raise ValueError(
178
+ f"`rope_scaling`'s factor field must be a number >= 1, got {rope_scaling_factor} "
179
+ f"of type {type(rope_scaling_factor)}"
180
+ )
model-00001-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4930b0c2b688686335364bb79191b7298411e858b937ed15730833e02f602987
3
+ size 4771122040
model-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:645c458619262a9be371c6131c0e6fd47fa2678d03fa03c5b11613e897c57d60
3
+ size 4999811584
model-00003-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a15da661fe55539fff768e8444ea716f5b53b4f64dedd0eb1516148df552d4fc
3
+ size 4999811632
model-00004-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7341c157fc61838228fc4176b5540f6012e571eb84057606daba91a7309b46d
3
+ size 4832006256
model-00005-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:195df854fe597227f8cae562e3d31652764ba757e7e8269ba2a08eac0f4a7756
3
+ size 4999811624
model-00006-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2cc209e37e5c9e609176c21fd3c4eb1d40f9a9d9432b832eacc0b56e2f82133
3
+ size 4832088568
model.safetensors.index.json ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 29434626048
4
+ },
5
+ "weight_map": {
6
+ "model.layers.0.attention.wo.weight": "model-00001-of-00006.safetensors",
7
+ "model.layers.0.attention.wqkv.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.attention_norm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.feed_forward.w1.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.feed_forward.w2.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.feed_forward.w3.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.ffn_norm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.1.attention.wo.weight": "model-00001-of-00006.safetensors",
14
+ "model.layers.1.attention.wqkv.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.1.attention_norm.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.1.feed_forward.w1.weight": "model-00001-of-00006.safetensors",
17
+ "model.layers.1.feed_forward.w2.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.1.feed_forward.w3.weight": "model-00001-of-00006.safetensors",
19
+ "model.layers.1.ffn_norm.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.10.attention.wo.weight": "model-00003-of-00006.safetensors",
21
+ "model.layers.10.attention.wqkv.weight": "model-00003-of-00006.safetensors",
22
+ "model.layers.10.attention_norm.weight": "model-00003-of-00006.safetensors",
23
+ "model.layers.10.feed_forward.w1.weight": "model-00003-of-00006.safetensors",
24
+ "model.layers.10.feed_forward.w2.weight": "model-00003-of-00006.safetensors",
25
+ "model.layers.10.feed_forward.w3.weight": "model-00003-of-00006.safetensors",
26
+ "model.layers.10.ffn_norm.weight": "model-00003-of-00006.safetensors",
27
+ "model.layers.11.attention.wo.weight": "model-00003-of-00006.safetensors",
28
+ "model.layers.11.attention.wqkv.weight": "model-00003-of-00006.safetensors",
29
+ "model.layers.11.attention_norm.weight": "model-00003-of-00006.safetensors",
30
+ "model.layers.11.feed_forward.w1.weight": "model-00003-of-00006.safetensors",
31
+ "model.layers.11.feed_forward.w2.weight": "model-00003-of-00006.safetensors",
32
+ "model.layers.11.feed_forward.w3.weight": "model-00003-of-00006.safetensors",
33
+ "model.layers.11.ffn_norm.weight": "model-00003-of-00006.safetensors",
34
+ "model.layers.12.attention.wo.weight": "model-00003-of-00006.safetensors",
35
+ "model.layers.12.attention.wqkv.weight": "model-00003-of-00006.safetensors",
36
+ "model.layers.12.attention_norm.weight": "model-00003-of-00006.safetensors",
37
+ "model.layers.12.feed_forward.w1.weight": "model-00003-of-00006.safetensors",
38
+ "model.layers.12.feed_forward.w2.weight": "model-00003-of-00006.safetensors",
39
+ "model.layers.12.feed_forward.w3.weight": "model-00003-of-00006.safetensors",
40
+ "model.layers.12.ffn_norm.weight": "model-00003-of-00006.safetensors",
41
+ "model.layers.13.attention.wo.weight": "model-00003-of-00006.safetensors",
42
+ "model.layers.13.attention.wqkv.weight": "model-00003-of-00006.safetensors",
43
+ "model.layers.13.attention_norm.weight": "model-00003-of-00006.safetensors",
44
+ "model.layers.13.feed_forward.w1.weight": "model-00003-of-00006.safetensors",
45
+ "model.layers.13.feed_forward.w2.weight": "model-00003-of-00006.safetensors",
46
+ "model.layers.13.feed_forward.w3.weight": "model-00003-of-00006.safetensors",
47
+ "model.layers.13.ffn_norm.weight": "model-00003-of-00006.safetensors",
48
+ "model.layers.14.attention.wo.weight": "model-00003-of-00006.safetensors",
49
+ "model.layers.14.attention.wqkv.weight": "model-00003-of-00006.safetensors",
50
+ "model.layers.14.attention_norm.weight": "model-00003-of-00006.safetensors",
51
+ "model.layers.14.feed_forward.w1.weight": "model-00003-of-00006.safetensors",
52
+ "model.layers.14.feed_forward.w2.weight": "model-00003-of-00006.safetensors",
53
+ "model.layers.14.feed_forward.w3.weight": "model-00003-of-00006.safetensors",
54
+ "model.layers.14.ffn_norm.weight": "model-00003-of-00006.safetensors",
55
+ "model.layers.15.attention.wo.weight": "model-00003-of-00006.safetensors",
56
+ "model.layers.15.attention.wqkv.weight": "model-00003-of-00006.safetensors",
57
+ "model.layers.15.attention_norm.weight": "model-00004-of-00006.safetensors",
58
+ "model.layers.15.feed_forward.w1.weight": "model-00004-of-00006.safetensors",
59
+ "model.layers.15.feed_forward.w2.weight": "model-00004-of-00006.safetensors",
60
+ "model.layers.15.feed_forward.w3.weight": "model-00004-of-00006.safetensors",
61
+ "model.layers.15.ffn_norm.weight": "model-00004-of-00006.safetensors",
62
+ "model.layers.16.attention.wo.weight": "model-00004-of-00006.safetensors",
63
+ "model.layers.16.attention.wqkv.weight": "model-00004-of-00006.safetensors",
64
+ "model.layers.16.attention_norm.weight": "model-00004-of-00006.safetensors",
65
+ "model.layers.16.feed_forward.w1.weight": "model-00004-of-00006.safetensors",
66
+ "model.layers.16.feed_forward.w2.weight": "model-00004-of-00006.safetensors",
67
+ "model.layers.16.feed_forward.w3.weight": "model-00004-of-00006.safetensors",
68
+ "model.layers.16.ffn_norm.weight": "model-00004-of-00006.safetensors",
69
+ "model.layers.17.attention.wo.weight": "model-00004-of-00006.safetensors",
70
+ "model.layers.17.attention.wqkv.weight": "model-00004-of-00006.safetensors",
71
+ "model.layers.17.attention_norm.weight": "model-00004-of-00006.safetensors",
72
+ "model.layers.17.feed_forward.w1.weight": "model-00004-of-00006.safetensors",
73
+ "model.layers.17.feed_forward.w2.weight": "model-00004-of-00006.safetensors",
74
+ "model.layers.17.feed_forward.w3.weight": "model-00004-of-00006.safetensors",
75
+ "model.layers.17.ffn_norm.weight": "model-00004-of-00006.safetensors",
76
+ "model.layers.18.attention.wo.weight": "model-00004-of-00006.safetensors",
77
+ "model.layers.18.attention.wqkv.weight": "model-00004-of-00006.safetensors",
78
+ "model.layers.18.attention_norm.weight": "model-00004-of-00006.safetensors",
79
+ "model.layers.18.feed_forward.w1.weight": "model-00004-of-00006.safetensors",
80
+ "model.layers.18.feed_forward.w2.weight": "model-00004-of-00006.safetensors",
81
+ "model.layers.18.feed_forward.w3.weight": "model-00004-of-00006.safetensors",
82
+ "model.layers.18.ffn_norm.weight": "model-00004-of-00006.safetensors",
83
+ "model.layers.19.attention.wo.weight": "model-00004-of-00006.safetensors",
84
+ "model.layers.19.attention.wqkv.weight": "model-00004-of-00006.safetensors",
85
+ "model.layers.19.attention_norm.weight": "model-00004-of-00006.safetensors",
86
+ "model.layers.19.feed_forward.w1.weight": "model-00004-of-00006.safetensors",
87
+ "model.layers.19.feed_forward.w2.weight": "model-00004-of-00006.safetensors",
88
+ "model.layers.19.feed_forward.w3.weight": "model-00004-of-00006.safetensors",
89
+ "model.layers.19.ffn_norm.weight": "model-00004-of-00006.safetensors",
90
+ "model.layers.2.attention.wo.weight": "model-00001-of-00006.safetensors",
91
+ "model.layers.2.attention.wqkv.weight": "model-00001-of-00006.safetensors",
92
+ "model.layers.2.attention_norm.weight": "model-00001-of-00006.safetensors",
93
+ "model.layers.2.feed_forward.w1.weight": "model-00001-of-00006.safetensors",
94
+ "model.layers.2.feed_forward.w2.weight": "model-00001-of-00006.safetensors",
95
+ "model.layers.2.feed_forward.w3.weight": "model-00001-of-00006.safetensors",
96
+ "model.layers.2.ffn_norm.weight": "model-00001-of-00006.safetensors",
97
+ "model.layers.20.attention.wo.weight": "model-00004-of-00006.safetensors",
98
+ "model.layers.20.attention.wqkv.weight": "model-00004-of-00006.safetensors",
99
+ "model.layers.20.attention_norm.weight": "model-00005-of-00006.safetensors",
100
+ "model.layers.20.feed_forward.w1.weight": "model-00004-of-00006.safetensors",
101
+ "model.layers.20.feed_forward.w2.weight": "model-00005-of-00006.safetensors",
102
+ "model.layers.20.feed_forward.w3.weight": "model-00004-of-00006.safetensors",
103
+ "model.layers.20.ffn_norm.weight": "model-00005-of-00006.safetensors",
104
+ "model.layers.21.attention.wo.weight": "model-00005-of-00006.safetensors",
105
+ "model.layers.21.attention.wqkv.weight": "model-00005-of-00006.safetensors",
106
+ "model.layers.21.attention_norm.weight": "model-00005-of-00006.safetensors",
107
+ "model.layers.21.feed_forward.w1.weight": "model-00005-of-00006.safetensors",
108
+ "model.layers.21.feed_forward.w2.weight": "model-00005-of-00006.safetensors",
109
+ "model.layers.21.feed_forward.w3.weight": "model-00005-of-00006.safetensors",
110
+ "model.layers.21.ffn_norm.weight": "model-00005-of-00006.safetensors",
111
+ "model.layers.22.attention.wo.weight": "model-00005-of-00006.safetensors",
112
+ "model.layers.22.attention.wqkv.weight": "model-00005-of-00006.safetensors",
113
+ "model.layers.22.attention_norm.weight": "model-00005-of-00006.safetensors",
114
+ "model.layers.22.feed_forward.w1.weight": "model-00005-of-00006.safetensors",
115
+ "model.layers.22.feed_forward.w2.weight": "model-00005-of-00006.safetensors",
116
+ "model.layers.22.feed_forward.w3.weight": "model-00005-of-00006.safetensors",
117
+ "model.layers.22.ffn_norm.weight": "model-00005-of-00006.safetensors",
118
+ "model.layers.23.attention.wo.weight": "model-00005-of-00006.safetensors",
119
+ "model.layers.23.attention.wqkv.weight": "model-00005-of-00006.safetensors",
120
+ "model.layers.23.attention_norm.weight": "model-00005-of-00006.safetensors",
121
+ "model.layers.23.feed_forward.w1.weight": "model-00005-of-00006.safetensors",
122
+ "model.layers.23.feed_forward.w2.weight": "model-00005-of-00006.safetensors",
123
+ "model.layers.23.feed_forward.w3.weight": "model-00005-of-00006.safetensors",
124
+ "model.layers.23.ffn_norm.weight": "model-00005-of-00006.safetensors",
125
+ "model.layers.24.attention.wo.weight": "model-00005-of-00006.safetensors",
126
+ "model.layers.24.attention.wqkv.weight": "model-00005-of-00006.safetensors",
127
+ "model.layers.24.attention_norm.weight": "model-00005-of-00006.safetensors",
128
+ "model.layers.24.feed_forward.w1.weight": "model-00005-of-00006.safetensors",
129
+ "model.layers.24.feed_forward.w2.weight": "model-00005-of-00006.safetensors",
130
+ "model.layers.24.feed_forward.w3.weight": "model-00005-of-00006.safetensors",
131
+ "model.layers.24.ffn_norm.weight": "model-00005-of-00006.safetensors",
132
+ "model.layers.25.attention.wo.weight": "model-00005-of-00006.safetensors",
133
+ "model.layers.25.attention.wqkv.weight": "model-00005-of-00006.safetensors",
134
+ "model.layers.25.attention_norm.weight": "model-00005-of-00006.safetensors",
135
+ "model.layers.25.feed_forward.w1.weight": "model-00005-of-00006.safetensors",
136
+ "model.layers.25.feed_forward.w2.weight": "model-00005-of-00006.safetensors",
137
+ "model.layers.25.feed_forward.w3.weight": "model-00005-of-00006.safetensors",
138
+ "model.layers.25.ffn_norm.weight": "model-00005-of-00006.safetensors",
139
+ "model.layers.26.attention.wo.weight": "model-00005-of-00006.safetensors",
140
+ "model.layers.26.attention.wqkv.weight": "model-00005-of-00006.safetensors",
141
+ "model.layers.26.attention_norm.weight": "model-00006-of-00006.safetensors",
142
+ "model.layers.26.feed_forward.w1.weight": "model-00005-of-00006.safetensors",
143
+ "model.layers.26.feed_forward.w2.weight": "model-00006-of-00006.safetensors",
144
+ "model.layers.26.feed_forward.w3.weight": "model-00006-of-00006.safetensors",
145
+ "model.layers.26.ffn_norm.weight": "model-00006-of-00006.safetensors",
146
+ "model.layers.27.attention.wo.weight": "model-00006-of-00006.safetensors",
147
+ "model.layers.27.attention.wqkv.weight": "model-00006-of-00006.safetensors",
148
+ "model.layers.27.attention_norm.weight": "model-00006-of-00006.safetensors",
149
+ "model.layers.27.feed_forward.w1.weight": "model-00006-of-00006.safetensors",
150
+ "model.layers.27.feed_forward.w2.weight": "model-00006-of-00006.safetensors",
151
+ "model.layers.27.feed_forward.w3.weight": "model-00006-of-00006.safetensors",
152
+ "model.layers.27.ffn_norm.weight": "model-00006-of-00006.safetensors",
153
+ "model.layers.28.attention.wo.weight": "model-00006-of-00006.safetensors",
154
+ "model.layers.28.attention.wqkv.weight": "model-00006-of-00006.safetensors",
155
+ "model.layers.28.attention_norm.weight": "model-00006-of-00006.safetensors",
156
+ "model.layers.28.feed_forward.w1.weight": "model-00006-of-00006.safetensors",
157
+ "model.layers.28.feed_forward.w2.weight": "model-00006-of-00006.safetensors",
158
+ "model.layers.28.feed_forward.w3.weight": "model-00006-of-00006.safetensors",
159
+ "model.layers.28.ffn_norm.weight": "model-00006-of-00006.safetensors",
160
+ "model.layers.29.attention.wo.weight": "model-00006-of-00006.safetensors",
161
+ "model.layers.29.attention.wqkv.weight": "model-00006-of-00006.safetensors",
162
+ "model.layers.29.attention_norm.weight": "model-00006-of-00006.safetensors",
163
+ "model.layers.29.feed_forward.w1.weight": "model-00006-of-00006.safetensors",
164
+ "model.layers.29.feed_forward.w2.weight": "model-00006-of-00006.safetensors",
165
+ "model.layers.29.feed_forward.w3.weight": "model-00006-of-00006.safetensors",
166
+ "model.layers.29.ffn_norm.weight": "model-00006-of-00006.safetensors",
167
+ "model.layers.3.attention.wo.weight": "model-00001-of-00006.safetensors",
168
+ "model.layers.3.attention.wqkv.weight": "model-00001-of-00006.safetensors",
169
+ "model.layers.3.attention_norm.weight": "model-00002-of-00006.safetensors",
170
+ "model.layers.3.feed_forward.w1.weight": "model-00001-of-00006.safetensors",
171
+ "model.layers.3.feed_forward.w2.weight": "model-00002-of-00006.safetensors",
172
+ "model.layers.3.feed_forward.w3.weight": "model-00001-of-00006.safetensors",
173
+ "model.layers.3.ffn_norm.weight": "model-00002-of-00006.safetensors",
174
+ "model.layers.30.attention.wo.weight": "model-00006-of-00006.safetensors",
175
+ "model.layers.30.attention.wqkv.weight": "model-00006-of-00006.safetensors",
176
+ "model.layers.30.attention_norm.weight": "model-00006-of-00006.safetensors",
177
+ "model.layers.30.feed_forward.w1.weight": "model-00006-of-00006.safetensors",
178
+ "model.layers.30.feed_forward.w2.weight": "model-00006-of-00006.safetensors",
179
+ "model.layers.30.feed_forward.w3.weight": "model-00006-of-00006.safetensors",
180
+ "model.layers.30.ffn_norm.weight": "model-00006-of-00006.safetensors",
181
+ "model.layers.31.attention.wo.weight": "model-00006-of-00006.safetensors",
182
+ "model.layers.31.attention.wqkv.weight": "model-00006-of-00006.safetensors",
183
+ "model.layers.31.attention_norm.weight": "model-00006-of-00006.safetensors",
184
+ "model.layers.31.feed_forward.w1.weight": "model-00006-of-00006.safetensors",
185
+ "model.layers.31.feed_forward.w2.weight": "model-00006-of-00006.safetensors",
186
+ "model.layers.31.feed_forward.w3.weight": "model-00006-of-00006.safetensors",
187
+ "model.layers.31.ffn_norm.weight": "model-00006-of-00006.safetensors",
188
+ "model.layers.4.attention.wo.weight": "model-00002-of-00006.safetensors",
189
+ "model.layers.4.attention.wqkv.weight": "model-00002-of-00006.safetensors",
190
+ "model.layers.4.attention_norm.weight": "model-00002-of-00006.safetensors",
191
+ "model.layers.4.feed_forward.w1.weight": "model-00002-of-00006.safetensors",
192
+ "model.layers.4.feed_forward.w2.weight": "model-00002-of-00006.safetensors",
193
+ "model.layers.4.feed_forward.w3.weight": "model-00002-of-00006.safetensors",
194
+ "model.layers.4.ffn_norm.weight": "model-00002-of-00006.safetensors",
195
+ "model.layers.5.attention.wo.weight": "model-00002-of-00006.safetensors",
196
+ "model.layers.5.attention.wqkv.weight": "model-00002-of-00006.safetensors",
197
+ "model.layers.5.attention_norm.weight": "model-00002-of-00006.safetensors",
198
+ "model.layers.5.feed_forward.w1.weight": "model-00002-of-00006.safetensors",
199
+ "model.layers.5.feed_forward.w2.weight": "model-00002-of-00006.safetensors",
200
+ "model.layers.5.feed_forward.w3.weight": "model-00002-of-00006.safetensors",
201
+ "model.layers.5.ffn_norm.weight": "model-00002-of-00006.safetensors",
202
+ "model.layers.6.attention.wo.weight": "model-00002-of-00006.safetensors",
203
+ "model.layers.6.attention.wqkv.weight": "model-00002-of-00006.safetensors",
204
+ "model.layers.6.attention_norm.weight": "model-00002-of-00006.safetensors",
205
+ "model.layers.6.feed_forward.w1.weight": "model-00002-of-00006.safetensors",
206
+ "model.layers.6.feed_forward.w2.weight": "model-00002-of-00006.safetensors",
207
+ "model.layers.6.feed_forward.w3.weight": "model-00002-of-00006.safetensors",
208
+ "model.layers.6.ffn_norm.weight": "model-00002-of-00006.safetensors",
209
+ "model.layers.7.attention.wo.weight": "model-00002-of-00006.safetensors",
210
+ "model.layers.7.attention.wqkv.weight": "model-00002-of-00006.safetensors",
211
+ "model.layers.7.attention_norm.weight": "model-00002-of-00006.safetensors",
212
+ "model.layers.7.feed_forward.w1.weight": "model-00002-of-00006.safetensors",
213
+ "model.layers.7.feed_forward.w2.weight": "model-00002-of-00006.safetensors",
214
+ "model.layers.7.feed_forward.w3.weight": "model-00002-of-00006.safetensors",
215
+ "model.layers.7.ffn_norm.weight": "model-00002-of-00006.safetensors",
216
+ "model.layers.8.attention.wo.weight": "model-00002-of-00006.safetensors",
217
+ "model.layers.8.attention.wqkv.weight": "model-00002-of-00006.safetensors",
218
+ "model.layers.8.attention_norm.weight": "model-00002-of-00006.safetensors",
219
+ "model.layers.8.feed_forward.w1.weight": "model-00002-of-00006.safetensors",
220
+ "model.layers.8.feed_forward.w2.weight": "model-00002-of-00006.safetensors",
221
+ "model.layers.8.feed_forward.w3.weight": "model-00002-of-00006.safetensors",
222
+ "model.layers.8.ffn_norm.weight": "model-00002-of-00006.safetensors",
223
+ "model.layers.9.attention.wo.weight": "model-00002-of-00006.safetensors",
224
+ "model.layers.9.attention.wqkv.weight": "model-00002-of-00006.safetensors",
225
+ "model.layers.9.attention_norm.weight": "model-00003-of-00006.safetensors",
226
+ "model.layers.9.feed_forward.w1.weight": "model-00002-of-00006.safetensors",
227
+ "model.layers.9.feed_forward.w2.weight": "model-00003-of-00006.safetensors",
228
+ "model.layers.9.feed_forward.w3.weight": "model-00003-of-00006.safetensors",
229
+ "model.layers.9.ffn_norm.weight": "model-00003-of-00006.safetensors",
230
+ "model.norm.weight": "model-00006-of-00006.safetensors",
231
+ "model.tok_embeddings.weight": "model-00001-of-00006.safetensors",
232
+ "score.weight": "model-00006-of-00006.safetensors"
233
+ }
234
+ }