Upload PPO MountainCar-v0 first run
Browse files- README.md +1 -1
- config.json +1 -1
- lunar_demo.zip +2 -2
- lunar_demo/data +9 -9
- lunar_demo/policy.optimizer.pth +2 -2
- lunar_demo/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value: -
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: -169.90 +/- 36.95
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0b2043a4d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0b2043a560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0b2043a5f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0b2043a680>", "_build": "<function ActorCriticPolicy._build at 0x7f0b2043a710>", "forward": "<function ActorCriticPolicy.forward at 0x7f0b2043a7a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0b2043a830>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0b2043a8c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0b2043a950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0b2043a9e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0b2043aa70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0b20475de0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 3, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 32768, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652605768.0146544, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAF3gBr/oZRU8X0/7vkX0Brz+6AW/K1E7uyXwD7/joDg8RAcXv8IbFzucOgS/ab2MuznbCb+l7uc7MVMjv1Y/PzwT6gm/xEIWPEFeFr86uD67nzkWv833IjsbdOa+NSCjOQv+D7/kSZc7OIwdvxde4jtZ7hm/6i8vvO6ECr8Grgk6lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -31.768, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSURz/4hX4j8k2QdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/4g40dilSCdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/4fM0P6KtQdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/4e4kNWluWdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+YPwuuievdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+XkxREWqMdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+W+49X9zfdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+WSlnAZbZdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+VpKzzErHdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+VDfFaSs9dX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+UkfLcKw7dX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+UGZ/kNnXdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+TmbLEDQrdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+Sk0rK/21dX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+SBf8dgfEdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+RJ7LMcIadX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+Qf2bobGWdX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+P/7zkIX1dX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+OT3Zf2K3dX2UKGgGR8BpAAAAAAAAaAdLyGgIRz/+N/nW8RL9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACF/axoqTbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACFp9JBgNPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACFXA/LTx5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACFBjWkJrtdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACEtK7I1cddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACEajvd/KAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACEL6UJOWTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACD8pCrtE5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACDtE5QxetdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACDM7lq8DkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACC7iADq4ZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACCgIyCWeIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACCLbYbsF/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACB7zCk43ndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACBGKAJ9iMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ACA8W9DhLodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFG7SRbKRudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFGl41P3zudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFGS8rZrYXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFF8w5/9YPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFFn/T9bX6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFFVHWjGkvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFFFpfx+a0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFE2DQJHAidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFEl9jPOY6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFEE5hjOLSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFD0WdmQKbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFDZHuqm0mdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFDFKkEcKgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFC1iONo8IdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFB/qgRK6GdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AFB1oxpL26dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AIDA8B+4LDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AICreZXuE3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AICYiPhhphdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AICC6H0se5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AIBuO0b961dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AIBblijL0SdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AIBMHryDqXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AIA8jiXIEKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AIAsf7rLQpdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AIALb5/LDAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AH/5rP+n63dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AH/d43WFvidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AH/I0ZWJaadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AH+45Lh73PdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AH+C5Etuk2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AH94u9OARTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ALAqRU3n6mdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ALAVARkEs8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ALACMglnh9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK/sJIDoyLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK/XiBGx2TdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK/E0iyIHkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK+1a4c3l0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK+l9Brvb5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK+V9nbqQjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK91EE1VHXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK9joZAIIGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK9Iqbz9S/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK8z9CNS62dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK8k2P1ct5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK7vb48EFGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AK7lq8DjiodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOHIfbKzRhdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOGzMRpUPydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOGgWac7QtdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOGK0lZ5iWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOF2mpEQXidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOFj5KvmozdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOFUhmoR7JdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOFFF2FFlTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOE1IiC8ODdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOEUKzAvcrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOECih37k5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AODm4iHIp6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AODSApazNVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AODCN0eU6gdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOCMWGh24edX2UKGgGR8BpAAAAAAAAaAdLyGgIR0AOCCUX531SdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0b2043a4d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0b2043a560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0b2043a5f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0b2043a680>", "_build": "<function ActorCriticPolicy._build at 0x7f0b2043a710>", "forward": "<function ActorCriticPolicy.forward at 0x7f0b2043a7a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0b2043a830>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0b2043a8c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0b2043a950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0b2043a9e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0b2043aa70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0b20475de0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 3, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652606131.092367, "learning_rate": 0.01, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+EeuFHrhR7hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAIctmL659Ic8wolfvpjjsbpfwuK+YrLYPGK3Dr6NZcO8gAMZPiViDj1Ox4K+oG5BvHcmIr/sjKu8VceYvZC/Iz3wY+G+19C9u01lhr/j/G87XX6Uv+dRazxJBf2+5KlMOABLT79EkoW64YuWvr6RU7yZKqK+ceaJvNJe3r7nym+7lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0B5qUHB1s+FdX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0B5qUyrPt2LdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5qjVMEidKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5qpa1TisGdX2UKGgGR8BfgAAAAAAAaAdLfmgIR0B5qqqOtGNJdX2UKGgGR8BegAAAAAAAaAdLemgIR0B5qtDu0CzUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5quEh7mdRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5q54QjD8+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5rFQvYe1bdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5rMIPbwjMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5rMLXtjTbdX2UKGgGR8BoIAAAAAAAaAdLwWgIR0B5rVS5y2hJdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5reL876pHdX2UKGgGR8BgYAAAAAAAaAdLg2gIR0B5rg1He7+UdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5rjUlRgqmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5rifvnbItdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5rlbqyGBXdX2UKGgGR8BgoAAAAAAAaAdLhWgIR0B5rojyFwkxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5rxWyTpxFdX2UKGgGR8BowAAAAAAAaAdLxmgIR0B5rxD0Dlo2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5sGEIw/PgdX2UKGgGR8BfwAAAAAAAaAdLf2gIR0B5sG2E0zj4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5sJR4yGi6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5sKW9lEqldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5sV5X2dupdX2UKGgGR8BgoAAAAAAAaAdLhWgIR0B5sgFTvRZ2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5sg+yJKradX2UKGgGR8BnYAAAAAAAaAdLu2gIR0B5shyIYWLxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5swfHPu5SdX2UKGgGR8BmQAAAAAAAaAdLsmgIR0B5s1ugpSaWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5s5P0qYqodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5s7w6QvHtdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5s9ZzPrv9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5tC1pj+aSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5tMWsRxtIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5tMEgW8AadX2UKGgGR8BoQAAAAAAAaAdLwmgIR0B5ti3BpHqedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5tiaz/p+udX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5tjUExIrfdX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0B5tmjh1klNdX2UKGgGR8BgYAAAAAAAaAdLg2gIR0B5tuvJRwZPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5tzps41gqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5uAWGh24edX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5uB3zMA3ldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5uC4z7/GVdX2UKGgGR8BgQAAAAAAAaAdLgmgIR0B5uEiyIHkcdX2UKGgGR8BewAAAAAAAaAdLe2gIR0B5uKQkona4dX2UKGgGR8BgQAAAAAAAaAdLgmgIR0B5uNEXtShrdX2UKGgGR8BoYAAAAAAAaAdLw2gIR0B5uV9Vmz0IdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ubvOQhfTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5uePU8V59dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5uf6rNnoQdX2UKGgGR8BhoAAAAAAAaAdLjWgIR0B5uo9vCMxXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5vDNX5nDjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5vCzfJmuldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5vGiZfD1odX2UKGgGR8Bn4AAAAAAAaAdLv2gIR0B5vKRwIdELdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0B5vSExqO94dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5vSe+VTrFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5vcfeUILPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5vdymygPFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5vemxdIGydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5vgNiH6/JdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5vouHvc8DdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5vwo5PuXvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5v2dGy5ZsdX2UKGgGR8BooAAAAAAAaAdLxWgIR0B5v5Lg4wRHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5v490Rvm6dX2UKGgGR8BgIAAAAAAAaAdLgWgIR0B5v9aY/mkndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5wDXnQpnZdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0B5wHMpw0fpdX2UKGgGR8BloAAAAAAAaAdLrWgIR0B5wYEKVpsXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5wgYbbUPQdX2UKGgGR8BnYAAAAAAAaAdLu2gIR0B5wmHoHLRsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5wsOkLx7RdX2UKGgGR8BkoAAAAAAAaAdLpWgIR0B5wyUqx1PndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5w2X2M85kdX2UKGgGR8BooAAAAAAAaAdLxWgIR0B5w2skpqh2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5w3VbzK9xdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5w5radtl7dX2UKGgGR8BhAAAAAAAAaAdLiGgIR0B5xEVymygPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5xKbNKRMfdX2UKGgGR8BnoAAAAAAAaAdLvWgIR0B5xOU3XI2gdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5xQnNPgvUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5xTAXVLBbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5xXYVZcLSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5xds2vStvdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0B5xojcEeQudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5xyVqveP8dX2UKGgGR8BfgAAAAAAAaAdLfmgIR0B5xzBi1AqvdX2UKGgGR8Bl4AAAAAAAaAdLr2gIR0B5x1frrxAjdX2UKGgGR8Bl4AAAAAAAaAdLr2gIR0B5yH+uNgjRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5yI++ueSTdX2UKGgGR8BoQAAAAAAAaAdLwmgIR0B5yMW56MR6dX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0B5yTBeokzHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5yUDSw4bTdX2UKGgGR8Bh4AAAAAAAaAdLj2gIR0B5yZkf9xZMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ygJu2qkudX2UKGgGR8BlAAAAAAAAaAdLqGgIR0B5ygZm7J4jdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ymcqe9SNdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
lunar_demo.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:656d81f26dd75d60560b3a766a8ab8c622f4004e940bf1084f13cff9522fe647
|
3 |
+
size 131829
|
lunar_demo/data
CHANGED
@@ -42,21 +42,21 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
-
"learning_rate": 0.
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
-
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,16 +66,16 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 2048,
|
80 |
"gamma": 0.99,
|
81 |
"gae_lambda": 0.95,
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1652606131.092367,
|
51 |
+
"learning_rate": 0.01,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+EeuFHrhR7hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAIctmL659Ic8wolfvpjjsbpfwuK+YrLYPGK3Dr6NZcO8gAMZPiViDj1Ox4K+oG5BvHcmIr/sjKu8VceYvZC/Iz3wY+G+19C9u01lhr/j/G87XX6Uv+dRazxJBf2+5KlMOABLT79EkoW64YuWvr6RU7yZKqK+ceaJvNJe3r7nym+7lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0B5qUHB1s+FdX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0B5qUyrPt2LdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5qjVMEidKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5qpa1TisGdX2UKGgGR8BfgAAAAAAAaAdLfmgIR0B5qqqOtGNJdX2UKGgGR8BegAAAAAAAaAdLemgIR0B5qtDu0CzUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5quEh7mdRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5q54QjD8+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5rFQvYe1bdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5rMIPbwjMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5rMLXtjTbdX2UKGgGR8BoIAAAAAAAaAdLwWgIR0B5rVS5y2hJdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5reL876pHdX2UKGgGR8BgYAAAAAAAaAdLg2gIR0B5rg1He7+UdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5rjUlRgqmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5rifvnbItdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5rlbqyGBXdX2UKGgGR8BgoAAAAAAAaAdLhWgIR0B5rojyFwkxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5rxWyTpxFdX2UKGgGR8BowAAAAAAAaAdLxmgIR0B5rxD0Dlo2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5sGEIw/PgdX2UKGgGR8BfwAAAAAAAaAdLf2gIR0B5sG2E0zj4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5sJR4yGi6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5sKW9lEqldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5sV5X2dupdX2UKGgGR8BgoAAAAAAAaAdLhWgIR0B5sgFTvRZ2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5sg+yJKradX2UKGgGR8BnYAAAAAAAaAdLu2gIR0B5shyIYWLxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5swfHPu5SdX2UKGgGR8BmQAAAAAAAaAdLsmgIR0B5s1ugpSaWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5s5P0qYqodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5s7w6QvHtdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5s9ZzPrv9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5tC1pj+aSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5tMWsRxtIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5tMEgW8AadX2UKGgGR8BoQAAAAAAAaAdLwmgIR0B5ti3BpHqedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5tiaz/p+udX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5tjUExIrfdX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0B5tmjh1klNdX2UKGgGR8BgYAAAAAAAaAdLg2gIR0B5tuvJRwZPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5tzps41gqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5uAWGh24edX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5uB3zMA3ldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5uC4z7/GVdX2UKGgGR8BgQAAAAAAAaAdLgmgIR0B5uEiyIHkcdX2UKGgGR8BewAAAAAAAaAdLe2gIR0B5uKQkona4dX2UKGgGR8BgQAAAAAAAaAdLgmgIR0B5uNEXtShrdX2UKGgGR8BoYAAAAAAAaAdLw2gIR0B5uV9Vmz0IdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ubvOQhfTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5uePU8V59dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5uf6rNnoQdX2UKGgGR8BhoAAAAAAAaAdLjWgIR0B5uo9vCMxXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5vDNX5nDjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5vCzfJmuldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5vGiZfD1odX2UKGgGR8Bn4AAAAAAAaAdLv2gIR0B5vKRwIdELdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0B5vSExqO94dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5vSe+VTrFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5vcfeUILPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5vdymygPFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5vemxdIGydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5vgNiH6/JdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5vouHvc8DdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5vwo5PuXvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5v2dGy5ZsdX2UKGgGR8BooAAAAAAAaAdLxWgIR0B5v5Lg4wRHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5v490Rvm6dX2UKGgGR8BgIAAAAAAAaAdLgWgIR0B5v9aY/mkndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5wDXnQpnZdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0B5wHMpw0fpdX2UKGgGR8BloAAAAAAAaAdLrWgIR0B5wYEKVpsXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5wgYbbUPQdX2UKGgGR8BnYAAAAAAAaAdLu2gIR0B5wmHoHLRsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5wsOkLx7RdX2UKGgGR8BkoAAAAAAAaAdLpWgIR0B5wyUqx1PndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5w2X2M85kdX2UKGgGR8BooAAAAAAAaAdLxWgIR0B5w2skpqh2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5w3VbzK9xdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5w5radtl7dX2UKGgGR8BhAAAAAAAAaAdLiGgIR0B5xEVymygPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5xKbNKRMfdX2UKGgGR8BnoAAAAAAAaAdLvWgIR0B5xOU3XI2gdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5xQnNPgvUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5xTAXVLBbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5xXYVZcLSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5xds2vStvdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0B5xojcEeQudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5xyVqveP8dX2UKGgGR8BfgAAAAAAAaAdLfmgIR0B5xzBi1AqvdX2UKGgGR8Bl4AAAAAAAaAdLr2gIR0B5x1frrxAjdX2UKGgGR8Bl4AAAAAAAaAdLr2gIR0B5yH+uNgjRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5yI++ueSTdX2UKGgGR8BoQAAAAAAAaAdLwmgIR0B5yMW56MR6dX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0B5yTBeokzHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5yUDSw4bTdX2UKGgGR8Bh4AAAAAAAaAdLj2gIR0B5yZkf9xZMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ygJu2qkudX2UKGgGR8BlAAAAAAAAaAdLqGgIR0B5ygZm7J4jdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ymcqe9SNdWUu"
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 160,
|
79 |
"n_steps": 2048,
|
80 |
"gamma": 0.99,
|
81 |
"gae_lambda": 0.95,
|
lunar_demo/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7d9270d878ec5a07e27f66866112e85ed2f50e8eef21b46f48fcf2d8e03b629
|
3 |
+
size 78237
|
lunar_demo/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 39873
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6150092d3faf6a68b5bb21051880321bbecf30722228b9a59baca7d52637a08b
|
3 |
size 39873
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d583d698b9fb36bf2743de39f93f6bb9256c9b8f0e47f544dd3f77565e4c837
|
3 |
+
size 207488
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -169.9, "std_reward": 36.94983085211622, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-15T09:23:28.455472"}
|