erud1t3's picture
LunarLander Model Launched
b1bd275
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f23f4509670>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f23f4509700>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f23f4509790>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f23f4509820>",
"_build": "<function ActorCriticPolicy._build at 0x7f23f45098b0>",
"forward": "<function ActorCriticPolicy.forward at 0x7f23f4509940>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f23f45099d0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f23f4509a60>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f23f4509af0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f23f4509b80>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f23f4509c10>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f23f4509ca0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f23f4503780>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
"dtype": "float32",
"shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=",
"n": 4,
"shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 2015232,
"_total_timesteps": 2000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1675300433058865312,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJq9OLzca0S8XBypPctPRr1Bh6u9so6ZvgAAgD8AAIA/s/W0PaNrKD3T6s690gCEvpXpVr3CVZW9AAAAAAAAAAAzy9a9wWESPznppLyC6NO+1+nEvWbYbj0AAAAAAAAAANqckr1cSx68449WPnafJ71y+Us4/etAPQAAgD8AAIA/syU3vbjAnbvdqhU8q4mOPIfk5bz213I9AACAPwAAgD+aT/G8vji3PxqRzb3qhom+zqWdu4zAvb0AAAAAAAAAAIAd9D18Xvk+6nyEvhNJ1L4SipS9u4DduwAAAAAAAAAAQNZ3vmL9hz/KbuK+USkpvyaTtr5+78K9AAAAAAAAAAAaH5W99lw9uufeF7RVnTEu/IZHu2h9pzMAAAAAAACAPwCwH7vH/bM/AGX8vWDo8b0Hejc75lTiPAAAAAAAAAAAZsKPPI8CEbo62oy8xCEtsxxwM7uDzmozAACAPwAAgD/gdji+sFI6P3QaDr4XLhu/kZmevhtizzwAAAAAAAAAAIAzjz1LlS8/KUMIvQ5hvL6FSYM95AewvQAAAAAAAAAAZjKiu/lTQj7iIKM9LatyvsZ+iDwDyh66AAAAAAAAAACtky0+jg+OP+U+CD/raO++rFZZPpWtlz4AAAAAAAAAAHO6jb0OeLo/y39Bvqwmu76zoUu9vhjbvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.007616000000000067,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDmd+NccScECUhpRSlIwBbJRL4owBdJRHQLCanT9KmKt1fZQoaAZoCWgPQwjBb0OMl6pyQJSGlFKUaBVL62gWR0CwmqHljmSydX2UKGgGaAloD0MIn3O366VBckCUhpRSlGgVS8loFkdAsJqudc0Lt3V9lChoBmgJaA9DCFc/NslP9XBAlIaUUpRoFUv5aBZHQLCayJJXhfl1fZQoaAZoCWgPQwjScqCH2sNSQJSGlFKUaBVLxGgWR0CwmvPCEYfodX2UKGgGaAloD0MINq/qrJbCcECUhpRSlGgVS81oFkdAsJr94/u9e3V9lChoBmgJaA9DCLrb9dKUB29AlIaUUpRoFUvxaBZHQLCbC5U96kZ1fZQoaAZoCWgPQwjxoURL3lNyQJSGlFKUaBVL5GgWR0CwmxRceKbbdX2UKGgGaAloD0MI9UpZhrhOcUCUhpRSlGgVS9hoFkdAsJsmgM+eOHV9lChoBmgJaA9DCEm70cd8RnFAlIaUUpRoFUvNaBZHQLCbLauwHJN1fZQoaAZoCWgPQwhUrYVZqBdyQJSGlFKUaBVLyGgWR0Cwmzd2LYPHdX2UKGgGaAloD0MInPnVHKDgc0CUhpRSlGgVS9RoFkdAsJtCWldka3V9lChoBmgJaA9DCPQWD++5525AlIaUUpRoFUvWaBZHQLCbdTMqz7d1fZQoaAZoCWgPQwiufmySnylxQJSGlFKUaBVLyWgWR0Cwm65EUj9odX2UKGgGaAloD0MIVisTfqmmckCUhpRSlGgVS+FoFkdAsJvDYf4h2XV9lChoBmgJaA9DCH0h5Ly/QXNAlIaUUpRoFUviaBZHQLCb1DaoMrp1fZQoaAZoCWgPQwhioGtfwLduQJSGlFKUaBVLy2gWR0Cwm9/nGKhtdX2UKGgGaAloD0MIYk1lUdhsckCUhpRSlGgVS+1oFkdAsJvfNu+AVnV9lChoBmgJaA9DCAvtnGZBR3BAlIaUUpRoFUvhaBZHQLCb4X0oSct1fZQoaAZoCWgPQwhlijkI+sVzQJSGlFKUaBVLy2gWR0CwnCeE/SpjdX2UKGgGaAloD0MIz6Pi/86ycECUhpRSlGgVS95oFkdAsJwreLvTgHV9lChoBmgJaA9DCDZaDvTQQXFAlIaUUpRoFUvZaBZHQLCcLk56t1Z1fZQoaAZoCWgPQwhDPBIvTw1yQJSGlFKUaBVLy2gWR0CwnESuMdcTdX2UKGgGaAloD0MIz4O7s/ZdbkCUhpRSlGgVS9toFkdAsJxIIQe3hHV9lChoBmgJaA9DCKA4gH7fHnBAlIaUUpRoFUvIaBZHQLCcU212JSB1fZQoaAZoCWgPQwgs8BXd+uxxQJSGlFKUaBVL1GgWR0CwnFhSgoPTdX2UKGgGaAloD0MIQDBHj9+zckCUhpRSlGgVS8NoFkdAsJyJ8uzyBnV9lChoBmgJaA9DCJ7TLNBuqXJAlIaUUpRoFUvzaBZHQLCclfO2RaJ1fZQoaAZoCWgPQwiEK6BQD+RwQJSGlFKUaBVL52gWR0CwpgsDbJwLdX2UKGgGaAloD0MILEme6zt+c0CUhpRSlGgVS8poFkdAsKYTZezD43V9lChoBmgJaA9DCE1p/S2Bzm9AlIaUUpRoFUvMaBZHQLCmGTs6aLJ1fZQoaAZoCWgPQwhnuAGfXxVyQJSGlFKUaBVL5mgWR0CwpiOtr9EUdX2UKGgGaAloD0MI7pQO1n+ocECUhpRSlGgVS9ZoFkdAsKYpX2dupHV9lChoBmgJaA9DCCOD3EXYa3FAlIaUUpRoFUvGaBZHQLCmWGhmGud1fZQoaAZoCWgPQwhpUZ/kzqBwQJSGlFKUaBVNAAFoFkdAsKZdHskY43V9lChoBmgJaA9DCIi6D0BqvHBAlIaUUpRoFUvWaBZHQLCmdyprDZV1fZQoaAZoCWgPQwjuPzIdOipwQJSGlFKUaBVL3WgWR0Cwpn9diUgTdX2UKGgGaAloD0MIjlcgepIWckCUhpRSlGgVS8xoFkdAsKaTz06HTXV9lChoBmgJaA9DCIV80LPZvXBAlIaUUpRoFUvNaBZHQLCmmqh11W91fZQoaAZoCWgPQwjIsmDij2ZyQJSGlFKUaBVL8WgWR0CwprzgqEvkdX2UKGgGaAloD0MIVdl3RfDKcUCUhpRSlGgVS/VoFkdAsKbGOU+s5nV9lChoBmgJaA9DCJOoF3yapW1AlIaUUpRoFUviaBZHQLCm9JbdJrd1fZQoaAZoCWgPQwiBzM6i9/dxQJSGlFKUaBVL4WgWR0Cwpv+2qkuZdX2UKGgGaAloD0MIDECjdCkOckCUhpRSlGgVS9RoFkdAsKdUu3+db3V9lChoBmgJaA9DCEkrvqHwpW9AlIaUUpRoFUvhaBZHQLCndRTCLuR1fZQoaAZoCWgPQwjGpwAYD5NzQJSGlFKUaBVL22gWR0Cwp3oldC3PdX2UKGgGaAloD0MIguFcwwzqcECUhpRSlGgVS+hoFkdAsKeGmIj4YnV9lChoBmgJaA9DCAcJUb4go2xAlIaUUpRoFUvhaBZHQLCnigVGkN51fZQoaAZoCWgPQwi4c2Gkl6xwQJSGlFKUaBVL2mgWR0Cwp7SN0eU7dX2UKGgGaAloD0MI1Jl7SLiDckCUhpRSlGgVS9ZoFkdAsKfJOwgTy3V9lChoBmgJaA9DCPCLS1Xa43FAlIaUUpRoFUvYaBZHQLCn1CAc1fp1fZQoaAZoCWgPQwjBrFCkO0dxQJSGlFKUaBVNAwFoFkdAsKfvW1+iJ3V9lChoBmgJaA9DCFZFuMmo53JAlIaUUpRoFUviaBZHQLCn9fseGPB1fZQoaAZoCWgPQwgzMV2IVeFxQJSGlFKUaBVL0mgWR0CwqASExqO+dX2UKGgGaAloD0MIQZscPukEcUCUhpRSlGgVS8xoFkdAsKgFUDMeOnV9lChoBmgJaA9DCAhb7PaZu3BAlIaUUpRoFU0BAWgWR0CwqCic0+C9dX2UKGgGaAloD0MIxqcAGE+gcECUhpRSlGgVS+1oFkdAsKhon8baRXV9lChoBmgJaA9DCID0TZqGRnFAlIaUUpRoFUvmaBZHQLCoacI7eVN1fZQoaAZoCWgPQwgxRE5fj3pwQJSGlFKUaBVLymgWR0CwqLJ71Iy1dX2UKGgGaAloD0MIABx79hwBckCUhpRSlGgVS/FoFkdAsKjQiPhhpnV9lChoBmgJaA9DCJwZ/Wg4Q21AlIaUUpRoFUvlaBZHQLCo7UAksz51fZQoaAZoCWgPQwga3UHsDFFwQJSGlFKUaBVL52gWR0CwqPQflp49dX2UKGgGaAloD0MI2PFfIIiZckCUhpRSlGgVS/NoFkdAsKjzZ5AyEnV9lChoBmgJaA9DCN8WLNUF4G5AlIaUUpRoFUvgaBZHQLCpExWDHwR1fZQoaAZoCWgPQwgHJGHfjrVwQJSGlFKUaBVL4mgWR0CwqTkFjd56dX2UKGgGaAloD0MIoBfuXNh6cUCUhpRSlGgVS9doFkdAsKlD9P1tf3V9lChoBmgJaA9DCH2wjA2dUnFAlIaUUpRoFUvaaBZHQLCpUHYHxBp1fZQoaAZoCWgPQwjuYMQ+gVhgQJSGlFKUaBVN6ANoFkdAsKlTblA/s3V9lChoBmgJaA9DCFmK5CuB0HBAlIaUUpRoFUvhaBZHQLCpZ/dIoVp1fZQoaAZoCWgPQwgO2UC62JNzQJSGlFKUaBVNEAFoFkdAsKlyoGY8dXV9lChoBmgJaA9DCAUx0LWvj3BAlIaUUpRoFUvqaBZHQLCpdKDCgsd1fZQoaAZoCWgPQwgDtRg8jOpxQJSGlFKUaBVL8mgWR0CwqZ28yvcKdX2UKGgGaAloD0MI0NVW7O9OcECUhpRSlGgVS8poFkdAsKmfV3EAHXV9lChoBmgJaA9DCCEgX0KFm3BAlIaUUpRoFUvVaBZHQLCpq48lolF1fZQoaAZoCWgPQwhH5/wUR15wQJSGlFKUaBVL1mgWR0Cwqea5kK/mdX2UKGgGaAloD0MI3uUivlO0cECUhpRSlGgVS8hoFkdAsKoIm1IAfnV9lChoBmgJaA9DCFDEIoYdR3NAlIaUUpRoFUvJaBZHQLCqCU8V58l1fZQoaAZoCWgPQwijrN9MTPVvQJSGlFKUaBVL52gWR0CwqheXeFcqdX2UKGgGaAloD0MIf9+/eTH+ckCUhpRSlGgVS/BoFkdAsKo7o5ggHXV9lChoBmgJaA9DCD25pkDmmm9AlIaUUpRoFUvjaBZHQLCqTd/8VHp1fZQoaAZoCWgPQwixGktYG49wQJSGlFKUaBVL2mgWR0Cwqmsny/bkdX2UKGgGaAloD0MIqfdUTvs2bkCUhpRSlGgVS9RoFkdAsKptLJ0W/XV9lChoBmgJaA9DCFLTLqbZWXBAlIaUUpRoFUvjaBZHQLCqie+VTrF1fZQoaAZoCWgPQwgEG9e/6xZxQJSGlFKUaBVL/GgWR0CwqpgvxpcpdX2UKGgGaAloD0MIZ7rXSX0Pb0CUhpRSlGgVS99oFkdAsKqmmKqGUXV9lChoBmgJaA9DCKpkAKiigHBAlIaUUpRoFUvqaBZHQLCqqrlNlAh1fZQoaAZoCWgPQwh7wDxkChFwQJSGlFKUaBVL5WgWR0CwqrCBGx2TdX2UKGgGaAloD0MITFMEOP3uckCUhpRSlGgVS9RoFkdAsKrFw++ueXV9lChoBmgJaA9DCJ6ymq5nW3FAlIaUUpRoFUvraBZHQLCq4IClrM11fZQoaAZoCWgPQwhhxD4BVFVwQJSGlFKUaBVL5mgWR0CwqukZNwirdX2UKGgGaAloD0MIG9XpQFZGb0CUhpRSlGgVS9hoFkdAsKsTYQJ5V3V9lChoBmgJaA9DCL5sO22NkXBAlIaUUpRoFUvNaBZHQLCrJc7Qswt1fZQoaAZoCWgPQwitFthjIuhuQJSGlFKUaBVL3mgWR0Cwqz57ojfOdX2UKGgGaAloD0MIIsFUMysEc0CUhpRSlGgVS+BoFkdAsKtQOx0MgHV9lChoBmgJaA9DCEgWMIGbWHJAlIaUUpRoFUvJaBZHQLCrgfU4JeF1fZQoaAZoCWgPQwigVPt0fNtwQJSGlFKUaBVL8GgWR0Cwq4yBoVVQdX2UKGgGaAloD0MItLCnHT42cECUhpRSlGgVS+1oFkdAsKuYmlZX+3V9lChoBmgJaA9DCEFjJlFv3XBAlIaUUpRoFUvOaBZHQLCrokhzNll1fZQoaAZoCWgPQwhl48EWezdzQJSGlFKUaBVL42gWR0Cwq6dJ4B3idX2UKGgGaAloD0MIvw6cM6IWb0CUhpRSlGgVS91oFkdAsKvC4c3l0nVlLg=="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 984,
"n_steps": 1024,
"gamma": 0.99,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 8,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}