--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: Llama-2-7b-hf-IDMGSP results: [] --- # Llama-2-7b-hf-IDMGSP This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1450 - Accuracy: {'accuracy': 0.9759036144578314} - F1: {'f1': 0.9758125472411187} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:--------------------------:| | 0.0766 | 1.0 | 498 | 0.1165 | {'accuracy': 0.9614708835341366} | {'f1': 0.9612813721780804} | | 0.182 | 2.0 | 996 | 0.0934 | {'accuracy': 0.9657379518072289} | {'f1': 0.9648059816939539} | | 0.037 | 3.0 | 1494 | 0.1190 | {'accuracy': 0.9716365461847389} | {'f1': 0.9710182097973841} | | 0.0349 | 4.0 | 1992 | 0.1884 | {'accuracy': 0.96875} | {'f1': 0.9692326702088224} | | 0.0046 | 5.0 | 2490 | 0.1450 | {'accuracy': 0.9759036144578314} | {'f1': 0.9758125472411187} | ### Framework versions - Transformers 4.35.0 - Pytorch 2.0.1 - Datasets 2.14.6 - Tokenizers 0.14.1