ernestum commited on
Commit
07806df
·
1 Parent(s): 5c5a68b

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Pendulum-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Pendulum-v1
16
+ type: Pendulum-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -189.25 +/- 66.36
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **Pendulum-v1**
25
+ This is a trained model of a **PPO** agent playing **Pendulum-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo ppo --env Pendulum-v1 -orga ernestum -f logs/
47
+ python -m rl_zoo3.enjoy --algo ppo --env Pendulum-v1 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo ppo --env Pendulum-v1 -orga ernestum -f logs/
53
+ python -m rl_zoo3.enjoy --algo ppo --env Pendulum-v1 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo ppo --env Pendulum-v1 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo ppo --env Pendulum-v1 -f logs/ -orga ernestum
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('clip_range', 0.2),
66
+ ('ent_coef', 0.0),
67
+ ('gae_lambda', 0.95),
68
+ ('gamma', 0.9),
69
+ ('learning_rate', 0.001),
70
+ ('n_envs', 4),
71
+ ('n_epochs', 10),
72
+ ('n_steps', 1024),
73
+ ('n_timesteps', 100000.0),
74
+ ('policy', 'MlpPolicy'),
75
+ ('sde_sample_freq', 4),
76
+ ('use_sde', True),
77
+ ('normalize', False)])
78
+ ```
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ppo
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - cpu
8
+ - - env
9
+ - Pendulum-v1
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 0
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - - seals
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - gymnasium_models
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - 4
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 3755125310
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - ''
64
+ - - track
65
+ - false
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - null
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - wandb_tags
81
+ - []
config.yml ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - clip_range
3
+ - 0.2
4
+ - - ent_coef
5
+ - 0.0
6
+ - - gae_lambda
7
+ - 0.95
8
+ - - gamma
9
+ - 0.9
10
+ - - learning_rate
11
+ - 0.001
12
+ - - n_envs
13
+ - 4
14
+ - - n_epochs
15
+ - 10
16
+ - - n_steps
17
+ - 1024
18
+ - - n_timesteps
19
+ - 100000.0
20
+ - - policy
21
+ - MlpPolicy
22
+ - - sde_sample_freq
23
+ - 4
24
+ - - use_sde
25
+ - true
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
ppo-Pendulum-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa88fec6c8ad62de18627fac90373e1cb1f7005da2df367889e90b851c66aa1c
3
+ size 137828
ppo-Pendulum-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
ppo-Pendulum-v1/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd294b67040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd294b670d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd294b67160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd294b671f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd294b67280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd294b67310>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd294b673a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd294b67430>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd294b674c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd294b67550>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd294b675e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd294b67670>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fd294b42ab0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 102400,
25
+ "_total_timesteps": 100000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": 0,
28
+ "action_noise": null,
29
+ "start_time": 1694771152245526076,
30
+ "learning_rate": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
33
+ },
34
+ "tensorboard_log": null,
35
+ "_last_obs": null,
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": true,
43
+ "sde_sample_freq": 4,
44
+ "_current_progress_remaining": -0.02400000000000002,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwHDGmeYlY2eMAWyUS8iMAXSUR0BGSomw7kn1dX2UKGgGR8AQyaz/p+tsaAdLyGgIR0BGSnVXmvGIdX2UKGgGR8AMLJEH+qBFaAdLyGgIR0BGSmLUCq6wdX2UKGgGR8B5j9ekYXO4aAdLyGgIR0BGSkcbR4QjdX2UKGgGR8APwaxX4j8laAdLyGgIR0BGWjh99c8ldX2UKGgGR8BhPPPE87p3aAdLyGgIR0BGWiPyTY/WdX2UKGgGR8ASjGuLaVUuaAdLyGgIR0BGWhFmWdEtdX2UKGgGR8BwfNFkQPI5aAdLyGgIR0BGWfWlMyrQdX2UKGgGR8CFGldkauOkaAdLyGgIR0BGad+5OJtSdX2UKGgGR8CA5kchC+lCaAdLyGgIR0BGacs+V1OkdX2UKGgGR8BwTm4YrJ8waAdLyGgIR0BGabi6xxDLdX2UKGgGR8CJGHyp71IzaAdLyGgIR0BGaZz5oGpudX2UKGgGR8CA/JUZvUBoaAdLyGgIR0BGeYP5HmRvdX2UKGgGR8Bw3S5VfeDWaAdLyGgIR0BGeW9lEqlQdX2UKGgGR8CIlUYk3S8baAdLyGgIR0BGeVzySV4YdX2UKGgGR8CA40XBxgiNaAdLyGgIR0BGeUExIre7dX2UKGgGR8B5mDK7qY7aaAdLyGgIR0BHNQ6IWP92dX2UKGgGR8CFwBiXpnpTaAdLyGgIR0BHNPvSc9W7dX2UKGgGR8Bg8oYtQKrraAdLyGgIR0BHNOuaF23bdX2UKGgGR8CFQXJlJ6IFaAdLyGgIR0BHNNAkcCHRdX2UKGgGR8Bw8faVUuL8aAdLyGgIR0BHROMl1KXfdX2UKGgGR8CEsaKYzBRAaAdLyGgIR0BHRM7+1jRVdX2UKGgGR8BxDxDRc/t6aAdLyGgIR0BHRLyUcGTtdX2UKGgGR8BxOEgdOqNqaAdLyGgIR0BHRKDbrTpgdX2UKGgGR8B5Fl0cOskqaAdLyGgIR0BHVLsrupjudX2UKGgGR8APgIhQm/nGaAdLyGgIR0BHVKd6LOzIdX2UKGgGR8CIuSpH7P6baAdLyGgIR0BHVJUYKpkxdX2UKGgGR8BwilVsDW9UaAdLyGgIR0BHVHmJWNm2dX2UKGgGR8B55/m8ujASaAdLyGgIR0BHZJ9RaX8gdX2UKGgGR8Bwxb7MxGlRaAdLyGgIR0BHZIuGsV+JdX2UKGgGR8B5YTz9S/CZaAdLyGgIR0BHZHkkrwvydX2UKGgGR8B4OhPAO8TSaAdLyGgIR0BHZF18stkGdX2UKGgGR8CBBlhFVktmaAdLyGgIR0BHdIj4YaYNdX2UKGgGR8B/qcOLBKtgaAdLyGgIR0BHdHTRYzSDdX2UKGgGR8CAtnU4JeE7aAdLyGgIR0BHdGKQ7tAtdX2UKGgGR8CJs/XJYDDCaAdLyGgIR0BHdEidJ8OTdX2UKGgGR8CFAeZAIIGAaAdLyGgIR0BILC/wiJO4dX2UKGgGR8ASqW6bvw3HaAdLyGgIR0BILB1cMVk+dX2UKGgGR8CFEAiFj/dZaAdLyGgIR0BILAsK9f1IdX2UKGgGR8AO3HvMKTjeaAdLyGgIR0BIK++Eh7mddX2UKGgGR8Bwqim/FirlaAdLyGgIR0BIO9pAUtZndX2UKGgGR8BxBMIIF/x2aAdLyGgIR0BIO8YIjW07dX2UKGgGR8ARDbi6xxDLaAdLyGgIR0BIO7OeJ53UdX2UKGgGR8CAKk619fCzaAdLyGgIR0BIO5flZHNHdX2UKGgGR8AXVB4Uvf0maAdLyGgIR0BIS38XN1QqdX2UKGgGR8BheVuYQarFaAdLyGgIR0BIS2rn1WbPdX2UKGgGR8Bw+zhuO0b+aAdLyGgIR0BIS1h9b5dodX2UKGgGR8B27lRUFSsKaAdLyGgIR0BISzzND+irdX2UKGgGR8BhnkF6iTMaaAdLyGgIR0BIW1QIldC3dX2UKGgGR8ARmVgQYk3TaAdLyGgIR0BIW0Gmk30gdX2UKGgGR8Bxb7N0NjLCaAdLyGgIR0BIWy9ugpSadX2UKGgGR8B88+jafzz3aAdLyGgIR0BIWxQBPsRhdX2UKGgGR8B5zzgn+hoNaAdLyGgIR0BIa0DEFW4mdX2UKGgGR8B3x5GH58BuaAdLyGgIR0BIay1/lQuVdX2UKGgGR8AMGXw9aEBbaAdLyGgIR0BIaxsMy8BddX2UKGgGR8Bw9o9Mbm2caAdLyGgIR0BIav9tMwlCdX2UKGgGR8B2t53GGVRlaAdLyGgIR0BJKes5n13/dX2UKGgGR8Bw6IKpkwvhaAdLyGgIR0BJKdkBjnV5dX2UKGgGR8CIvjS1maphaAdLyGgIR0BJKcbaRISUdX2UKGgGR8B3XAnWrfcfaAdLyGgIR0BJKatLcsUZdX2UKGgGR8BxNZV7x/d7aAdLyGgIR0BJOe54GD+SdX2UKGgGR8CA1fZZjhDPaAdLyGgIR0BJOdvsJIDpdX2UKGgGR8BhXzaIvalDaAdLyGgIR0BJOcma6STydX2UKGgGR8CLm4ZqmCRPaAdLyGgIR0BJOa4MF2V3dX2UKGgGR8BhpbdFfAsTaAdLyGgIR0BJSd8Z1mrbdX2UKGgGR8CAx+Ik7fYSaAdLyGgIR0BJSctGus90dX2UKGgGR8Bw69J17pmmaAdLyGgIR0BJSbj1f3N+dX2UKGgGR8CGYiiXY150aAdLyGgIR0BJSZ1FH8TBdX2UKGgGR8CFImAkLQXzaAdLyGgIR0BJWd6C17Y1dX2UKGgGR7/0Q5/9YOlPaAdLyGgIR0BJWcriEQGwdX2UKGgGR8B6bUsoUi6haAdLyGgIR0BJWbiIcinpdX2UKGgGR8BhVVoQFs55aAdLyGgIR0BJWZzgdfb9dX2UKGgGR8BxGVpVS4vwaAdLyGgIR0BJakbo8p1BdX2UKGgGR8B5L/ueBg/kaAdLyGgIR0BJajSPU8V6dX2UKGgGR8B5a3syBTXKaAdLyGgIR0BJaiJO32EkdX2UKGgGR8BgyZoPCl7/aAdLyGgIR0BJagggX/HYdX2UKGgGR8BhzBksjFAFaAdLyGgIR0BKJr2pQ1rJdX2UKGgGR8AOSi9IwudxaAdLyGgIR0BKJqxs2vSudX2UKGgGR8CFY12wmmcfaAdLyGgIR0BKJpo0ygwodX2UKGgGR8B5k8l+mWMTaAdLyGgIR0BKJn6l+EytdX2UKGgGR8BxK7hisny/aAdLyGgIR0BKNpeVs1sMdX2UKGgGR8AD/huO0b97aAdLyGgIR0BKNoMKCxu9dX2UKGgGR8Bw0tmHxjJ/aAdLyGgIR0BKNnKOktVadX2UKGgGR8B5hz2lEZzgaAdLyGgIR0BKNlbNbC79dX2UKGgGR8B41pAfMfRvaAdLyGgIR0BKRmRvFWGRdX2UKGgGR8BwyCVQhwERaAdLyGgIR0BKRlAeJYT1dX2UKGgGR8BwROJUHY6GaAdLyGgIR0BKRj2zv7WNdX2UKGgGR8CAG0yJKraNaAdLyGgIR0BKRiILw4KhdX2UKGgGR8BgpeG21D0EaAdLyGgIR0BKVkz41xbTdX2UKGgGR8CFLb/qgRK6aAdLyGgIR0BKVjh1klNUdX2UKGgGR8AIEP+XJHRUaAdLyGgIR0BKViX6ZYxMdX2UKGgGR8BxHWYjSofkaAdLyGgIR0BKVgo5PuXvdX2UKGgGR8ATcO/cnE2paAdLyGgIR0BKZgiNbTttdX2UKGgGR8Bw+yTnq3VkaAdLyGgIR0BKZfSYw7DEdX2UKGgGR8CFISGIsRQKaAdLyGgIR0BKZeIuXeFddX2UKGgGR8BwuDxaxHG0aAdLyGgIR0BKZcaOxSpBdX2UKGgGR8Bwx9L7GecyaAdLyGgIR0BKdclXzUZvdX2UKGgGR8BxFe3KB/ZvaAdLyGgIR0BKdbTc6/7BdX2UKGgGR8CJEIh+OOsDaAdLyGgIR0BKdaJhvze5dX2UKGgGR8CFBG2pAD7qaAdLyGgIR0BKdYa5wwTNdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 250,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolgMAAAAAAAAAAQEBlGgUSwOFlGgYdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoECiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUaBh0lFKUjARoaWdolGgQKJYMAAAAAAAAAAAAgD8AAIA/AAAAQZRoCksDhZRoGHSUUpSMCGxvd19yZXBylIwNWy0xLiAtMS4gLTguXZSMCWhpZ2hfcmVwcpSMClsxLiAxLiA4Ll2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True]",
60
+ "bounded_above": "[ True True True]",
61
+ "_shape": [
62
+ 3
63
+ ],
64
+ "low": "[-1. -1. -8.]",
65
+ "high": "[1. 1. 8.]",
66
+ "low_repr": "[-1. -1. -8.]",
67
+ "high_repr": "[1. 1. 8.]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
72
+ ":serialized:": "gAWVRgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYBAAAAAAAAAAGUaBRLAYWUaBh0lFKUjAZfc2hhcGWUSwGFlIwDbG93lGgQKJYEAAAAAAAAAAAAAMCUaApLAYWUaBh0lFKUjARoaWdolGgQKJYEAAAAAAAAAAAAAECUaApLAYWUaBh0lFKUjAhsb3dfcmVwcpSMBC0yLjCUjAloaWdoX3JlcHKUjAMyLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMYwUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPIoQ42GVprdeWAktRZZZNLWhGowDaW5jlIoQqXN4RLwzgViCGvc629qNQXWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=",
73
+ "dtype": "float32",
74
+ "bounded_below": "[ True]",
75
+ "bounded_above": "[ True]",
76
+ "_shape": [
77
+ 1
78
+ ],
79
+ "low": "[-2.]",
80
+ "high": "[2.]",
81
+ "low_repr": "-2.0",
82
+ "high_repr": "2.0",
83
+ "_np_random": "Generator(PCG64)"
84
+ },
85
+ "n_envs": 1,
86
+ "n_steps": 1024,
87
+ "gamma": 0.9,
88
+ "gae_lambda": 0.95,
89
+ "ent_coef": 0.0,
90
+ "vf_coef": 0.5,
91
+ "max_grad_norm": 0.5,
92
+ "batch_size": 64,
93
+ "n_epochs": 10,
94
+ "clip_range": {
95
+ ":type:": "<class 'function'>",
96
+ ":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
97
+ },
98
+ "clip_range_vf": null,
99
+ "normalize_advantage": true,
100
+ "target_kl": null,
101
+ "lr_schedule": {
102
+ ":type:": "<class 'function'>",
103
+ ":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
104
+ }
105
+ }
ppo-Pendulum-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38a97ba3110e2c7500d7371d0b6d4cae11d9458e713b3558c89bf99b2f55872b
3
+ size 82160
ppo-Pendulum-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be542f8bb454365173f9e4ea14ab68cabc11b968254a49fb0dbad55bed400c16
3
+ size 40382
ppo-Pendulum-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-Pendulum-v1/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.4.0-156-generic-x86_64-with-glibc2.29 # 173-Ubuntu SMP Tue Jul 11 07:25:22 UTC 2023
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu117
5
+ - GPU Enabled: False
6
+ - Numpy: 1.24.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.21.0
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -189.2534682, "std_reward": 66.36133815611241, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-15T13:52:49.960932"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5ce2124af89a6fc975e8699dd5cfc9103572037576aa9591d9f0cb6038a2d22
3
+ size 15240