File size: 28,757 Bytes
3a0af86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:156
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: Snowflake/snowflake-arctic-embed-l
widget:
- source_sentence: What are some of the tools that different systems can apply to
problems, as mentioned in the context?
sentences:
- Synthetic data as a substantial component of pretraining is becoming increasingly
common, and the Phi series of models has consistently emphasized the importance
of synthetic data. Rather than serving as a cheap substitute for organic data,
synthetic data has several direct advantages over organic data.
- 'The number of available systems has exploded. Different systems have different
tools they can apply to your problems—like Python and JavaScript and web search
and image generation and maybe even database lookups... so you’d better understand
what those tools are, what they can do and how to tell if the LLM used them or
not.
Did you know ChatGPT has two entirely different ways of running Python now?
Want to build a Claude Artifact that talks to an external API? You’d better understand
CSP and CORS HTTP headers first.'
- '29th: NotebookLM’s automatically generated podcasts are surprisingly effective
30th: Weeknotes: Three podcasts, two trips and a new plugin system
October
1st: OpenAI DevDay 2024 live blog
2nd: OpenAI DevDay: Let’s build developer tools, not digital God
15th: ChatGPT will happily write you a thinly disguised horoscope
17th: Video scraping: extracting JSON data from a 35 second screen capture for
less than 1/10th of a cent
18th: Experimenting with audio input and output for the OpenAI Chat Completion
API
19th: Running Llama 3.2 Vision and Phi-3.5 Vision on a Mac with mistral.rs
21st: Everything I built with Claude Artifacts this week
22nd: Initial explorations of Anthropic’s new Computer Use capability'
- source_sentence: What key themes and pivotal moments in the field of Large Language
Models were identified in 2024?
sentences:
- 'One way to think about these models is an extension of the chain-of-thought prompting
trick, first explored in the May 2022 paper Large Language Models are Zero-Shot
Reasoners.
This is that trick where, if you get a model to talk out loud about a problem
it’s solving, you often get a result which the model would not have achieved otherwise.
o1 takes this process and further bakes it into the model itself. The details
are somewhat obfuscated: o1 models spend “reasoning tokens” thinking through the
problem that are not directly visible to the user (though the ChatGPT UI shows
a summary of them), then outputs a final result.'
- 'Things we learned about LLMs in 2024
Simon Willison’s Weblog
Subscribe
Things we learned about LLMs in 2024
31st December 2024
A lot has happened in the world of Large Language Models over the course of 2024.
Here’s a review of things we figured out about the field in the past twelve months,
plus my attempt at identifying key themes and pivotal moments.
This is a sequel to my review of 2023.
In this article:'
- 'The number of available systems has exploded. Different systems have different
tools they can apply to your problems—like Python and JavaScript and web search
and image generation and maybe even database lookups... so you’d better understand
what those tools are, what they can do and how to tell if the LLM used them or
not.
Did you know ChatGPT has two entirely different ways of running Python now?
Want to build a Claude Artifact that talks to an external API? You’d better understand
CSP and CORS HTTP headers first.'
- source_sentence: Which organizations have models that scored higher than GPT-4-0314?
sentences:
- 'This prompt-driven custom interface feature is so powerful and easy to build
(once you’ve figured out the gnarly details of browser sandboxing) that I expect
it to show up as a feature in a wide range of products in 2025.
Universal access to the best models lasted for just a few short months
For a few short months this year all three of the best available models—GPT-4o,
Claude 3.5 Sonnet and Gemini 1.5 Pro—were freely available to most of the world.'
- 'Then there’s the rest. If you browse the Chatbot Arena leaderboard today—still
the most useful single place to get a vibes-based evaluation of models—you’ll
see that GPT-4-0314 has fallen to around 70th place. The 18 organizations with
higher scoring models are Google, OpenAI, Alibaba, Anthropic, Meta, Reka AI, 01
AI, Amazon, Cohere, DeepSeek, Nvidia, Mistral, NexusFlow, Zhipu AI, xAI, AI21
Labs, Princeton and Tencent.
Training a GPT-4 beating model was a huge deal in 2023. In 2024 it’s an achievement
that isn’t even particularly notable, though I personally still celebrate any
time a new organization joins that list.
Some of those GPT-4 models run on my laptop'
- 'This remains astonishing to me. I thought a model with the capabilities and output
quality of GPT-4 needed a datacenter class server with one or more $40,000+ GPUs.
These models take up enough of my 64GB of RAM that I don’t run them often—they
don’t leave much room for anything else.
The fact that they run at all is a testament to the incredible training and inference
performance gains that we’ve figured out over the past year. It turns out there
was a lot of low-hanging fruit to be harvested in terms of model efficiency. I
expect there’s still more to come.'
- source_sentence: What does the term "slop" refer to in the context of generative
AI usage?
sentences:
- 'I think this means that, as individual users, we don’t need to feel any guilt
at all for the energy consumed by the vast majority of our prompts. The impact
is likely neglible compared to driving a car down the street or maybe even watching
a video on YouTube.
Likewise, training. DeepSeek v3 training for less than $6m is a fantastic sign
that training costs can and should continue to drop.
For less efficient models I find it useful to compare their energy usage to commercial
flights. The largest Llama 3 model cost about the same as a single digit number
of fully loaded passenger flights from New York to London. That’s certainly not
nothing, but once trained that model can be used by millions of people at no extra
training cost.'
- 'A lot of people absolutely hate this stuff. In some of the spaces I hang out
(Mastodon, Bluesky, Lobste.rs, even Hacker News on occasion) even suggesting that
“LLMs are useful” can be enough to kick off a huge fight.
I get it. There are plenty of reasons to dislike this technology—the environmental
impact, the (lack of) ethics of the training data, the lack of reliability, the
negative applications, the potential impact on people’s jobs.
LLMs absolutely warrant criticism. We need to be talking through these problems,
finding ways to mitigate them and helping people learn how to use these tools
responsibly in ways where the positive applications outweigh the negative.'
- 'I love the term “slop” because it so succinctly captures one of the ways we should
not be using generative AI!
Slop was even in the running for Oxford Word of the Year 2024, but it lost to
brain rot.
Synthetic training data works great
An idea that surprisingly seems to have stuck in the public consciousness is that
of “model collapse”. This was first described in the paper The Curse of Recursion:
Training on Generated Data Makes Models Forget in May 2023, and repeated in Nature
in July 2024 with the more eye-catching headline AI models collapse when trained
on recursively generated data.'
- source_sentence: What are the dates of the articles listed as more recent articles
in the context?
sentences:
- "Posted 31st December 2024 at 6:07 pm · Follow me on Mastodon or Twitter or subscribe\
\ to my newsletter\n\n\nMore recent articles\n\nRun LLMs on macOS using llm-mlx\
\ and Apple's MLX framework - 15th February 2025\nURL-addressable Pyodide Python\
\ environments - 13th February 2025\nUsing pip to install a Large Language Model\
\ that's under 100MB - 7th February 2025\n\n\n \n\n\nThis is Things we learned\
\ about LLMs in 2024 by Simon Willison, posted on 31st December 2024.\n\nPart\
\ of series LLMs annual review\n\nStuff we figured out about AI in 2023 - Dec.\
\ 31, 2023, 11:59 p.m. \nThings we learned about LLMs in 2024 - Dec. 31, 2024,\
\ 6:07 p.m. \n\n\n\n google\n 347\n\n\n ai\n\
\ 1098\n\n\n openai\n 255"
- 'OpenAI made GPT-4o free for all users in May, and Claude 3.5 Sonnet was freely
available from its launch in June. This was a momentus change, because for the
previous year free users had mostly been restricted to GPT-3.5 level models, meaning
new users got a very inaccurate mental model of what a capable LLM could actually
do.
That era appears to have ended, likely permanently, with OpenAI’s launch of ChatGPT
Pro. This $200/month subscription service is the only way to access their most
capable model, o1 Pro.
Since the trick behind the o1 series (and the future models it will undoubtedly
inspire) is to expend more compute time to get better results, I don’t think those
days of free access to the best available models are likely to return.'
- 'Against this photo of butterflies at the California Academy of Sciences:
A shallow dish, likely a hummingbird or butterfly feeder, is red. Pieces of orange
slices of fruit are visible inside the dish.
Two butterflies are positioned in the feeder, one is a dark brown/black butterfly
with white/cream-colored markings. The other is a large, brown butterfly with
patterns of lighter brown, beige, and black markings, including prominent eye
spots. The larger brown butterfly appears to be feeding on the fruit.'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.75
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.75
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.20000000000000004
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.10000000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.75
name: Cosine Recall@1
- type: cosine_recall@3
value: 1.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8968216255952429
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.861111111111111
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.861111111111111
name: Cosine Map@100
---
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ernestobs7/legal-ft-v0")
# Run inference
sentences = [
'What are the dates of the articles listed as more recent articles in the context?',
"Posted 31st December 2024 at 6:07 pm · Follow me on Mastodon or Twitter or subscribe to my newsletter\n\n\nMore recent articles\n\nRun LLMs on macOS using llm-mlx and Apple's MLX framework - 15th February 2025\nURL-addressable Pyodide Python environments - 13th February 2025\nUsing pip to install a Large Language Model that's under 100MB - 7th February 2025\n\n\n \n\n\nThis is Things we learned about LLMs in 2024 by Simon Willison, posted on 31st December 2024.\n\nPart of series LLMs annual review\n\nStuff we figured out about AI in 2023 - Dec. 31, 2023, 11:59 p.m. \nThings we learned about LLMs in 2024 - Dec. 31, 2024, 6:07 p.m. \n\n\n\n google\n 347\n\n\n ai\n 1098\n\n\n openai\n 255",
'Against this photo of butterflies at the California Academy of Sciences:\n\n\nA shallow dish, likely a hummingbird or butterfly feeder, is red. Pieces of orange slices of fruit are visible inside the dish.\nTwo butterflies are positioned in the feeder, one is a dark brown/black butterfly with white/cream-colored markings. The other is a large, brown butterfly with patterns of lighter brown, beige, and black markings, including prominent eye spots. The larger brown butterfly appears to be feeding on the fruit.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.75 |
| cosine_accuracy@3 | 1.0 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.75 |
| cosine_precision@3 | 0.3333 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.75 |
| cosine_recall@3 | 1.0 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| **cosine_ndcg@10** | **0.8968** |
| cosine_mrr@10 | 0.8611 |
| cosine_map@100 | 0.8611 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 156 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 156 samples:
| | sentence_0 | sentence_1 |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 13 tokens</li><li>mean: 20.12 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 43 tokens</li><li>mean: 130.53 tokens</li><li>max: 204 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:----------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What are the hardware requirements mentioned for running models like GPT-4?</code> | <code>This remains astonishing to me. I thought a model with the capabilities and output quality of GPT-4 needed a datacenter class server with one or more $40,000+ GPUs.<br>These models take up enough of my 64GB of RAM that I don’t run them often—they don’t leave much room for anything else.<br>The fact that they run at all is a testament to the incredible training and inference performance gains that we’ve figured out over the past year. It turns out there was a lot of low-hanging fruit to be harvested in terms of model efficiency. I expect there’s still more to come.</code> |
| <code>What does the author attribute the ability to run these models on less powerful hardware to?</code> | <code>This remains astonishing to me. I thought a model with the capabilities and output quality of GPT-4 needed a datacenter class server with one or more $40,000+ GPUs.<br>These models take up enough of my 64GB of RAM that I don’t run them often—they don’t leave much room for anything else.<br>The fact that they run at all is a testament to the incredible training and inference performance gains that we’ve figured out over the past year. It turns out there was a lot of low-hanging fruit to be harvested in terms of model efficiency. I expect there’s still more to come.</code> |
| <code>What challenges are associated with using LLMs in 2024?</code> | <code>The year of slop<br>Synthetic training data works great<br>LLMs somehow got even harder to use<br>Knowledge is incredibly unevenly distributed<br>LLMs need better criticism<br>Everything tagged “llms” on my blog in 2024</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `num_train_epochs`: 10
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | cosine_ndcg@10 |
|:-----:|:----:|:--------------:|
| 1.0 | 16 | 0.8885 |
| 2.0 | 32 | 0.8939 |
| 3.0 | 48 | 0.8939 |
| 3.125 | 50 | 0.8994 |
| 4.0 | 64 | 0.8939 |
| 5.0 | 80 | 0.8939 |
| 6.0 | 96 | 0.8968 |
| 6.25 | 100 | 0.8968 |
| 7.0 | 112 | 0.8968 |
| 8.0 | 128 | 0.8968 |
| 9.0 | 144 | 0.8968 |
| 9.375 | 150 | 0.8968 |
| 10.0 | 160 | 0.8968 |
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |