File size: 28,757 Bytes
3a0af86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:156
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: Snowflake/snowflake-arctic-embed-l
widget:
- source_sentence: What are some of the tools that different systems can apply to
    problems, as mentioned in the context?
  sentences:
  - Synthetic data as a substantial component of pretraining is becoming increasingly
    common, and the Phi series of models has consistently emphasized the importance
    of synthetic data. Rather than serving as a cheap substitute for organic data,
    synthetic data has several direct advantages over organic data.
  - 'The number of available systems has exploded. Different systems have different
    tools they can apply to your problems—like Python and JavaScript and web search
    and image generation and maybe even database lookups... so you’d better understand
    what those tools are, what they can do and how to tell if the LLM used them or
    not.

    Did you know ChatGPT has two entirely different ways of running Python now?

    Want to build a Claude Artifact that talks to an external API? You’d better understand
    CSP and CORS HTTP headers first.'
  - '29th: NotebookLM’s automatically generated podcasts are surprisingly effective


    30th: Weeknotes: Three podcasts, two trips and a new plugin system




    October


    1st: OpenAI DevDay 2024 live blog


    2nd: OpenAI DevDay: Let’s build developer tools, not digital God


    15th: ChatGPT will happily write you a thinly disguised horoscope


    17th: Video scraping: extracting JSON data from a 35 second screen capture for
    less than 1/10th of a cent


    18th: Experimenting with audio input and output for the OpenAI Chat Completion
    API


    19th: Running Llama 3.2 Vision and Phi-3.5 Vision on a Mac with mistral.rs


    21st: Everything I built with Claude Artifacts this week


    22nd: Initial explorations of Anthropic’s new Computer Use capability'
- source_sentence: What key themes and pivotal moments in the field of Large Language
    Models were identified in 2024?
  sentences:
  - 'One way to think about these models is an extension of the chain-of-thought prompting
    trick, first explored in the May 2022 paper Large Language Models are Zero-Shot
    Reasoners.

    This is that trick where, if you get a model to talk out loud about a problem
    it’s solving, you often get a result which the model would not have achieved otherwise.

    o1 takes this process and further bakes it into the model itself. The details
    are somewhat obfuscated: o1 models spend “reasoning tokens” thinking through the
    problem that are not directly visible to the user (though the ChatGPT UI shows
    a summary of them), then outputs a final result.'
  - 'Things we learned about LLMs in 2024






















    Simon Willison’s Weblog

    Subscribe







    Things we learned about LLMs in 2024

    31st December 2024

    A lot has happened in the world of Large Language Models over the course of 2024.
    Here’s a review of things we figured out about the field in the past twelve months,
    plus my attempt at identifying key themes and pivotal moments.

    This is a sequel to my review of 2023.

    In this article:'
  - 'The number of available systems has exploded. Different systems have different
    tools they can apply to your problems—like Python and JavaScript and web search
    and image generation and maybe even database lookups... so you’d better understand
    what those tools are, what they can do and how to tell if the LLM used them or
    not.

    Did you know ChatGPT has two entirely different ways of running Python now?

    Want to build a Claude Artifact that talks to an external API? You’d better understand
    CSP and CORS HTTP headers first.'
- source_sentence: Which organizations have models that scored higher than GPT-4-0314?
  sentences:
  - 'This prompt-driven custom interface feature is so powerful and easy to build
    (once you’ve figured out the gnarly details of browser sandboxing) that I expect
    it to show up as a feature in a wide range of products in 2025.

    Universal access to the best models lasted for just a few short months

    For a few short months this year all three of the best available models—GPT-4o,
    Claude 3.5 Sonnet and Gemini 1.5 Pro—were freely available to most of the world.'
  - 'Then there’s the rest. If you browse the Chatbot Arena leaderboard today—still
    the most useful single place to get a vibes-based evaluation of models—you’ll
    see that GPT-4-0314 has fallen to around 70th place. The 18 organizations with
    higher scoring models are Google, OpenAI, Alibaba, Anthropic, Meta, Reka AI, 01
    AI, Amazon, Cohere, DeepSeek, Nvidia, Mistral, NexusFlow, Zhipu AI, xAI, AI21
    Labs, Princeton and Tencent.

    Training a GPT-4 beating model was a huge deal in 2023. In 2024 it’s an achievement
    that isn’t even particularly notable, though I personally still celebrate any
    time a new organization joins that list.

    Some of those GPT-4 models run on my laptop'
  - 'This remains astonishing to me. I thought a model with the capabilities and output
    quality of GPT-4 needed a datacenter class server with one or more $40,000+ GPUs.

    These models take up enough of my 64GB of RAM that I don’t run them often—they
    don’t leave much room for anything else.

    The fact that they run at all is a testament to the incredible training and inference
    performance gains that we’ve figured out over the past year. It turns out there
    was a lot of low-hanging fruit to be harvested in terms of model efficiency. I
    expect there’s still more to come.'
- source_sentence: What does the term "slop" refer to in the context of generative
    AI usage?
  sentences:
  - 'I think this means that, as individual users, we don’t need to feel any guilt
    at all for the energy consumed by the vast majority of our prompts. The impact
    is likely neglible compared to driving a car down the street or maybe even watching
    a video on YouTube.

    Likewise, training. DeepSeek v3 training for less than $6m is a fantastic sign
    that training costs can and should continue to drop.

    For less efficient models I find it useful to compare their energy usage to commercial
    flights. The largest Llama 3 model cost about the same as a single digit number
    of fully loaded passenger flights from New York to London. That’s certainly not
    nothing, but once trained that model can be used by millions of people at no extra
    training cost.'
  - 'A lot of people absolutely hate this stuff. In some of the spaces I hang out
    (Mastodon, Bluesky, Lobste.rs, even Hacker News on occasion) even suggesting that
    “LLMs are useful” can be enough to kick off a huge fight.

    I get it. There are plenty of reasons to dislike this technology—the environmental
    impact, the (lack of) ethics of the training data, the lack of reliability, the
    negative applications, the potential impact on people’s jobs.

    LLMs absolutely warrant criticism. We need to be talking through these problems,
    finding ways to mitigate them and helping people learn how to use these tools
    responsibly in ways where the positive applications outweigh the negative.'
  - 'I love the term “slop” because it so succinctly captures one of the ways we should
    not be using generative AI!

    Slop was even in the running for Oxford Word of the Year 2024, but it lost to
    brain rot.

    Synthetic training data works great

    An idea that surprisingly seems to have stuck in the public consciousness is that
    of “model collapse”. This was first described in the paper The Curse of Recursion:
    Training on Generated Data Makes Models Forget in May 2023, and repeated in Nature
    in July 2024 with the more eye-catching headline AI models collapse when trained
    on recursively generated data.'
- source_sentence: What are the dates of the articles listed as more recent articles
    in the context?
  sentences:
  - "Posted 31st December 2024 at 6:07 pm · Follow me on Mastodon or Twitter or subscribe\
    \ to my newsletter\n\n\nMore recent articles\n\nRun LLMs on macOS using llm-mlx\
    \ and Apple's MLX framework - 15th February 2025\nURL-addressable Pyodide Python\
    \ environments - 13th February 2025\nUsing pip to install a Large Language Model\
    \ that's under 100MB - 7th February 2025\n\n\n \n\n\nThis is Things we learned\
    \ about LLMs in 2024 by Simon Willison, posted on 31st December 2024.\n\nPart\
    \ of series LLMs annual review\n\nStuff we figured out about AI in 2023 - Dec.\
    \ 31, 2023, 11:59 p.m. \nThings we learned about LLMs in 2024 - Dec. 31, 2024,\
    \ 6:07 p.m. \n\n\n\n            google\n            347\n\n\n            ai\n\
    \            1098\n\n\n            openai\n            255"
  - 'OpenAI made GPT-4o free for all users in May, and Claude 3.5 Sonnet was freely
    available from its launch in June. This was a momentus change, because for the
    previous year free users had mostly been restricted to GPT-3.5 level models, meaning
    new users got a very inaccurate mental model of what a capable LLM could actually
    do.

    That era appears to have ended, likely permanently, with OpenAI’s launch of ChatGPT
    Pro. This $200/month subscription service is the only way to access their most
    capable model, o1 Pro.

    Since the trick behind the o1 series (and the future models it will undoubtedly
    inspire) is to expend more compute time to get better results, I don’t think those
    days of free access to the best available models are likely to return.'
  - 'Against this photo of butterflies at the California Academy of Sciences:



    A shallow dish, likely a hummingbird or butterfly feeder, is red.  Pieces of orange
    slices of fruit are visible inside the dish.

    Two butterflies are positioned in the feeder, one is a dark brown/black butterfly
    with white/cream-colored markings.  The other is a large, brown butterfly with
    patterns of lighter brown, beige, and black markings, including prominent eye
    spots. The larger brown butterfly appears to be feeding on the fruit.'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.75
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 1.0
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.75
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3333333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.20000000000000004
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.10000000000000002
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.75
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 1.0
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8968216255952429
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.861111111111111
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.861111111111111
      name: Cosine Map@100
---

# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ernestobs7/legal-ft-v0")
# Run inference
sentences = [
    'What are the dates of the articles listed as more recent articles in the context?',
    "Posted 31st December 2024 at 6:07 pm · Follow me on Mastodon or Twitter or subscribe to my newsletter\n\n\nMore recent articles\n\nRun LLMs on macOS using llm-mlx and Apple's MLX framework - 15th February 2025\nURL-addressable Pyodide Python environments - 13th February 2025\nUsing pip to install a Large Language Model that's under 100MB - 7th February 2025\n\n\n \n\n\nThis is Things we learned about LLMs in 2024 by Simon Willison, posted on 31st December 2024.\n\nPart of series LLMs annual review\n\nStuff we figured out about AI in 2023 - Dec. 31, 2023, 11:59 p.m. \nThings we learned about LLMs in 2024 - Dec. 31, 2024, 6:07 p.m. \n\n\n\n            google\n            347\n\n\n            ai\n            1098\n\n\n            openai\n            255",
    'Against this photo of butterflies at the California Academy of Sciences:\n\n\nA shallow dish, likely a hummingbird or butterfly feeder, is red.  Pieces of orange slices of fruit are visible inside the dish.\nTwo butterflies are positioned in the feeder, one is a dark brown/black butterfly with white/cream-colored markings.  The other is a large, brown butterfly with patterns of lighter brown, beige, and black markings, including prominent eye spots. The larger brown butterfly appears to be feeding on the fruit.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.75       |
| cosine_accuracy@3   | 1.0        |
| cosine_accuracy@5   | 1.0        |
| cosine_accuracy@10  | 1.0        |
| cosine_precision@1  | 0.75       |
| cosine_precision@3  | 0.3333     |
| cosine_precision@5  | 0.2        |
| cosine_precision@10 | 0.1        |
| cosine_recall@1     | 0.75       |
| cosine_recall@3     | 1.0        |
| cosine_recall@5     | 1.0        |
| cosine_recall@10    | 1.0        |
| **cosine_ndcg@10**  | **0.8968** |
| cosine_mrr@10       | 0.8611     |
| cosine_map@100      | 0.8611     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 156 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 156 samples:
  |         | sentence_0                                                                         | sentence_1                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 13 tokens</li><li>mean: 20.12 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 43 tokens</li><li>mean: 130.53 tokens</li><li>max: 204 tokens</li></ul> |
* Samples:
  | sentence_0                                                                                                | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
  |:----------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What are the hardware requirements mentioned for running models like GPT-4?</code>                  | <code>This remains astonishing to me. I thought a model with the capabilities and output quality of GPT-4 needed a datacenter class server with one or more $40,000+ GPUs.<br>These models take up enough of my 64GB of RAM that I don’t run them often—they don’t leave much room for anything else.<br>The fact that they run at all is a testament to the incredible training and inference performance gains that we’ve figured out over the past year. It turns out there was a lot of low-hanging fruit to be harvested in terms of model efficiency. I expect there’s still more to come.</code> |
  | <code>What does the author attribute the ability to run these models on less powerful hardware to?</code> | <code>This remains astonishing to me. I thought a model with the capabilities and output quality of GPT-4 needed a datacenter class server with one or more $40,000+ GPUs.<br>These models take up enough of my 64GB of RAM that I don’t run them often—they don’t leave much room for anything else.<br>The fact that they run at all is a testament to the incredible training and inference performance gains that we’ve figured out over the past year. It turns out there was a lot of low-hanging fruit to be harvested in terms of model efficiency. I expect there’s still more to come.</code> |
  | <code>What challenges are associated with using LLMs in 2024?</code>                                      | <code>The year of slop<br>Synthetic training data works great<br>LLMs somehow got even harder to use<br>Knowledge is incredibly unevenly distributed<br>LLMs need better criticism<br>Everything tagged “llms” on my blog in 2024</code>                                                                                                                                                                                                                                                                                                                                                                |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `num_train_epochs`: 10
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch | Step | cosine_ndcg@10 |
|:-----:|:----:|:--------------:|
| 1.0   | 16   | 0.8885         |
| 2.0   | 32   | 0.8939         |
| 3.0   | 48   | 0.8939         |
| 3.125 | 50   | 0.8994         |
| 4.0   | 64   | 0.8939         |
| 5.0   | 80   | 0.8939         |
| 6.0   | 96   | 0.8968         |
| 6.25  | 100  | 0.8968         |
| 7.0   | 112  | 0.8968         |
| 8.0   | 128  | 0.8968         |
| 9.0   | 144  | 0.8968         |
| 9.375 | 150  | 0.8968         |
| 10.0  | 160  | 0.8968         |


### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->