Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1337.33 +/- 94.08
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:810e95118af9ee5890ee8663d626b33c6e6d13993f8824d3298bba416ef4ae34
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9fbae32dc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9fbae32e50>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9fbae32ee0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9fbae32f70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9fbae36040>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9fbae360d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9fbae36160>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9fbae361f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9fbae36280>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9fbae36310>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9fbae363a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9fbae36430>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f9fbae34f40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1678552859432103402,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAO5XSr9UuXw//11svmhBAj9OXTI+2SxlP90dMD2CBQC/cczKPhAYPD/QEIQ+ww6RPqodkT9fDdy+JAiUP60+Fj5PJKM/cI4Zv2mHLz8+4ke+xPmRv2heWD/D1kS/MSjCvp8IZj/osfs+DoDAPk/Fsb9H+CO+rluWvo8hLT9Snvg/5CyOvC5smz+yQUg+HMypvkx5gD+17li9Fk+LPrGnS79liJC/akqbP3Duh76LdLc+fJPoPXQ1oD7//Co/8WdDPOYOXj8uvbe9flgPP0prWj/eco6/6LH7Pg6AwD7KUzg/SzYju8OhXT82CWy9OiTUPy5heT8RX5HAaZc/PlV1Wb9EIzG8rTDTP3wKh7/l5I8/oJOeP+SOv7qSaII/Q/t1vkg/uz9WdN88kUbUPoR+0b6I+qO/TfSvPNeHMb7F5D0/3nKOv+ix+z4OgMA+T8Wxv4OWRb98Ahs+4KcOPzYJjT/8ln2/EYWQP/LTNz5xebw9KA2AP5kHLLzL+hQ9IkaRPt6Inr9uaRg/b1lqvQq5Dj+5RRS/XPQSv7mlKz9mVR28HUJzP9Bedr4kPYS98a1oP58IZj/osfs+DoDAPspTOD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAQv5q2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2McyPQAAAAArDfS/AAAAAMJbALsAAAAAE4QAQAAAAADORHm9AAAAAJPy6j8AAAAAUF23PQAAAABqvvq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAT3KMtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCl0Tz0AAAAAQV7nvwAAAADmsvw8AAAAAN7o4j8AAAAA6ykcvQAAAAAfLOw/AAAAABkZ8T0AAAAAMLn8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACl52zUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDHeEG8AAAAAFWZ+r8AAAAA0SnzPQAAAADh5uw/AAAAAFNE8L0AAAAAHvf6PwAAAADG8m29AAAAAB5r8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACk/eEyAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA7+c9vQAAAAC1WOS/AAAAAHLDAbwAAAAAzDDbPwAAAACxxQq9AAAAAIrw5T8AAAAAZ7C0OwAAAADr/Oy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJc1ZQWN3nqMAWyUTegDjAF0lEdAq7LK9/SYxHV9lChoBkdAkcGUF4cFQmgHTegDaAhHQKuzTRx95Qh1fZQoaAZHQJUQdkpZwGZoB03oA2gIR0CruZJd8iOedX2UKGgGR0CTP+zEaVD8aAdN6ANoCEdAq7r+S2Yv4HV9lChoBkdAlwmJggHNYGgHTegDaAhHQKu/pu4PPLR1fZQoaAZHQJW2TgBLf1poB03oA2gIR0Crv+tVJcxCdX2UKGgGR0CU4BSpR4yHaAdN6ANoCEdAq8WQ77sOXnV9lChoBkdAkuTpsTFl1GgHTegDaAhHQKvHGDdxhlV1fZQoaAZHQIvS9bNbC79oB03oA2gIR0CrzYupjtojdX2UKGgGR0CVbfdnTRYzaAdN6ANoCEdAq84En1Fpf3V9lChoBkdAllcftMPBi2gHTegDaAhHQKvX9bvgFX91fZQoaAZHQJR2X4Kx9ohoB03oA2gIR0Cr2pqZML4OdX2UKGgGR0CRo5P557gLaAdN6ANoCEdAq+CJTVDrq3V9lChoBkdAk0aAUxmCiGgHTegDaAhHQKvg0tNi6QN1fZQoaAZHQIt++eOGTLZoB03oA2gIR0Cr5rpda+vhdX2UKGgGR0CQ6YUipvP1aAdN6ANoCEdAq+goLy+YdHV9lChoBkdAlfyu7QLNOmgHTegDaAhHQKvswTFl05l1fZQoaAZHQJT24Dq4YrJoB03oA2gIR0Cr7Q/ZmI0qdX2UKGgGR0CXWiVk+X7caAdN6ANoCEdAq/P9dgOSXHV9lChoBkdAkzaTEaVD8mgHTegDaAhHQKv2Pf3N9ph1fZQoaAZHQJai84FRpDhoB03oA2gIR0Cr/Pz6BRQ8dX2UKGgGR0CVpPhIvrWzaAdN6ANoCEdAq/1GPzWf9XV9lChoBkdAlIOIpMHryGgHTegDaAhHQKwC/B1s+FF1fZQoaAZHQJJH+BUaQ3hoB03oA2gIR0CsBHFjVhCudX2UKGgGR0CUaMXiiqQzaAdN6ANoCEdArAk4HiWE9XV9lChoBkdAkOQgDV6NVGgHTegDaAhHQKwJh2s7uD11fZQoaAZHQJUrHHwPRRdoB03oA2gIR0CsDzeAd4mkdX2UKGgGR0CU45bgjyFxaAdN6ANoCEdArBE3atcOb3V9lChoBkdAlUIgrlNlAmgHTegDaAhHQKwYpTxXnyN1fZQoaAZHQJQEkDr7fpFoB03oA2gIR0CsGRxBmf5DdX2UKGgGR0CTbIRRdhRZaAdN6ANoCEdArB8wNqgyunV9lChoBkdAkoyb+98JD2gHTegDaAhHQKwgj1oQFs51fZQoaAZHQJOI2nLq2SdoB03oA2gIR0CsJROSW7e3dX2UKGgGR0CTyJN8ma6SaAdN6ANoCEdArCVdYMfA9HV9lChoBkdAlzu5+pfhM2gHTegDaAhHQKwq7Lq2SdR1fZQoaAZHQJMxXzDn/1hoB03oA2gIR0CsLEyJbdJrdX2UKGgGR0CYZpbKA8SxaAdN6ANoCEdArDJ0o4MnZ3V9lChoBkdAmG6cSkCV8mgHTegDaAhHQKwy5VFQVKx1fZQoaAZHQJTyy7xusLhoB03oA2gIR0CsPbdPci4bdX2UKGgGR0CWfiybhFVlaAdN6ANoCEdArEAaxmkFfXV9lChoBkdAlk3B1Tzd12gHTegDaAhHQKxFwfT1CgN1fZQoaAZHQJVDsPz4DcNoB03oA2gIR0CsRgnZCfHxdX2UKGgGR0CTDZlANXo1aAdN6ANoCEdArEvNuBMBZXV9lChoBkdAlUGsFyJbdWgHTegDaAhHQKxNNzbvgFZ1fZQoaAZHQJB9vawljVhoB03oA2gIR0CsVAzyrgfmdX2UKGgGR0CTJ90btJFtaAdN6ANoCEdArFSF1wHZ9XV9lChoBkdAke+Gq5sj3WgHTegDaAhHQKxcCSq2jO91fZQoaAZHQJCrb+bVjI9oB03oA2gIR0CsXXLvTgEVdX2UKGgGR0CYIFH9FWn1aAdN6ANoCEdArGIqA2AG0XV9lChoBkdAkYsj37DVIGgHTegDaAhHQKxidN3W4Ex1fZQoaAZHQJXc5+LFXJZoB03oA2gIR0CsaEG+0w8GdX2UKGgGR0CQzeD8cdYGaAdN6ANoCEdArGmoXoC+13V9lChoBkdAlUvQKKHfuWgHTegDaAhHQKxu8MRYigV1fZQoaAZHQJYMbA8B+4NoB03oA2gIR0Csb101Q66rdX2UKGgGR0CRuhuAI6bOaAdN6ANoCEdArHhPP3SKFnV9lChoBkdAlPeqhpQDWGgHTegDaAhHQKx5tuKoAGV1fZQoaAZHQJhPlt2s7uFoB03oA2gIR0CsfrNvXK8tdX2UKGgGR0CWgn9+w1R+aAdN6ANoCEdArH79UhmoSHV9lChoBkdAktG/114gR2gHTegDaAhHQKyE2bADaGp1fZQoaAZHQJVs61og3cZoB03oA2gIR0Cshm4qG1x9dX2UKGgGR0CYZLj3Ehq1aAdN6ANoCEdArIsUl9jPOnV9lChoBkdAj+qrJSzgM2gHTegDaAhHQKyLWwMYuTR1fZQoaAZHQJSmjGgi/wloB03oA2gIR0CslAXmV7hOdX2UKGgGR0CU+3c6/7BPaAdN6ANoCEdArJZU/B3zMHV9lChoBkdAk2AmMfigkGgHTegDaAhHQKybOeDnNgV1fZQoaAZHQI/5Y/NZ/1BoB03oA2gIR0Csm4idrftQdX2UKGgGR0CQZ4pcX3xnaAdN6ANoCEdArKLfdXT3I3V9lChoBkdAllInNgSey2gHTegDaAhHQKylNoh6jWV1fZQoaAZHQJFR7Fn7HhloB03oA2gIR0CssCkJBw+/dX2UKGgGR0CYCPNAC4jKaAdN6ANoCEdArLC5LVWjoXV9lChoBkdAiEL+BpYcN2gHTegDaAhHQKy43IPsiSt1fZQoaAZHQIUg0cfeUINoB03oA2gIR0CsukkRradudX2UKGgGR0CRjjdp7CzkaAdN6ANoCEdArL8AhwEQoXV9lChoBkdAidudcKPXCmgHTegDaAhHQKy/SXO4XoF1fZQoaAZHQIt6F8uzyBloB03oA2gIR0CsxTXrMTvidX2UKGgGR0CEdowaBI4EaAdN6ANoCEdArMas90RvnHV9lChoBkdAl3Cg9/z8QGgHTegDaAhHQKzL+okzGgl1fZQoaAZHQI4HCqjrRjVoB03oA2gIR0CszG1S4vvjdX2UKGgGR0CGZfMbFS88aAdN6ANoCEdArNV5AQg9vHV9lChoBkdAk4wpa7mMfmgHTegDaAhHQKzW1oRIz311fZQoaAZHQJUSZJrcj7hoB03oA2gIR0Cs23SGBWgfdX2UKGgGR0CI72Xm/336aAdN6ANoCEdArNu/KuB+WnV9lChoBkdAlL3AuZkTYmgHTegDaAhHQKzhdugpSaV1fZQoaAZHQJOdH8n/kvNoB03oA2gIR0Cs4trk8zRAdX2UKGgGR0CWwlFc6eXiaAdN6ANoCEdArOeI5aNdaHV9lChoBkdAlm7c+3YthGgHTegDaAhHQKznz1Hvtt11fZQoaAZHQJLVGJFb3XZoB03oA2gIR0Cs75nX/YJ3dX2UKGgGR0CWcTKCg9NfaAdN6ANoCEdArPHaIUJv53V9lChoBkdAkmAWxptaZGgHTegDaAhHQKz3n6jWTX91fZQoaAZHQJGsjOqvNeNoB03oA2gIR0Cs9+idSVGDdX2UKGgGR0CSkI4u9OARaAdN6ANoCEdArP3FrdnCf3V9lChoBkdAiCkasIVuaWgHTegDaAhHQKz/LjYqXnh1fZQoaAZHQJTgYB2fTThoB03oA2gIR0CtA90m2LHddX2UKGgGR0CVHwl+3H7xaAdN6ANoCEdArQQoppeu3nV9lChoBkdAlBTRTOxB3WgHTegDaAhHQK0L4WWQfZF1fZQoaAZHQJIiLggow25oB03oA2gIR0CtDkEy+HrRdX2UKGgGR0CP+kSL61staAdN6ANoCEdArRclJlJ6IHV9lChoBkdAhs0v3ztkWmgHTegDaAhHQK0XsKjSG8F1fZQoaAZHQIZjDsByS3doB03oA2gIR0CtHv5YYBNmdX2UKGgGR0CSoLvS+g14aAdN6ANoCEdArSBZOHnEEXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3361d27c1355cac8673b78964496223a5af76f62636c5f85ad885f2b93f06741
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52919af6cfdaa1f3711a101a269f3d1f0fc2c78355965651ea88c1a7e221d9af
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9fbae32dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9fbae32e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9fbae32ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9fbae32f70>", "_build": "<function ActorCriticPolicy._build at 0x7f9fbae36040>", "forward": "<function ActorCriticPolicy.forward at 0x7f9fbae360d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9fbae36160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9fbae361f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9fbae36280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9fbae36310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9fbae363a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9fbae36430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9fbae34f40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678552859432103402, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAO5XSr9UuXw//11svmhBAj9OXTI+2SxlP90dMD2CBQC/cczKPhAYPD/QEIQ+ww6RPqodkT9fDdy+JAiUP60+Fj5PJKM/cI4Zv2mHLz8+4ke+xPmRv2heWD/D1kS/MSjCvp8IZj/osfs+DoDAPk/Fsb9H+CO+rluWvo8hLT9Snvg/5CyOvC5smz+yQUg+HMypvkx5gD+17li9Fk+LPrGnS79liJC/akqbP3Duh76LdLc+fJPoPXQ1oD7//Co/8WdDPOYOXj8uvbe9flgPP0prWj/eco6/6LH7Pg6AwD7KUzg/SzYju8OhXT82CWy9OiTUPy5heT8RX5HAaZc/PlV1Wb9EIzG8rTDTP3wKh7/l5I8/oJOeP+SOv7qSaII/Q/t1vkg/uz9WdN88kUbUPoR+0b6I+qO/TfSvPNeHMb7F5D0/3nKOv+ix+z4OgMA+T8Wxv4OWRb98Ahs+4KcOPzYJjT/8ln2/EYWQP/LTNz5xebw9KA2AP5kHLLzL+hQ9IkaRPt6Inr9uaRg/b1lqvQq5Dj+5RRS/XPQSv7mlKz9mVR28HUJzP9Bedr4kPYS98a1oP58IZj/osfs+DoDAPspTOD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAQv5q2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2McyPQAAAAArDfS/AAAAAMJbALsAAAAAE4QAQAAAAADORHm9AAAAAJPy6j8AAAAAUF23PQAAAABqvvq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAT3KMtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCl0Tz0AAAAAQV7nvwAAAADmsvw8AAAAAN7o4j8AAAAA6ykcvQAAAAAfLOw/AAAAABkZ8T0AAAAAMLn8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACl52zUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDHeEG8AAAAAFWZ+r8AAAAA0SnzPQAAAADh5uw/AAAAAFNE8L0AAAAAHvf6PwAAAADG8m29AAAAAB5r8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACk/eEyAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA7+c9vQAAAAC1WOS/AAAAAHLDAbwAAAAAzDDbPwAAAACxxQq9AAAAAIrw5T8AAAAAZ7C0OwAAAADr/Oy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJc1ZQWN3nqMAWyUTegDjAF0lEdAq7LK9/SYxHV9lChoBkdAkcGUF4cFQmgHTegDaAhHQKuzTRx95Qh1fZQoaAZHQJUQdkpZwGZoB03oA2gIR0CruZJd8iOedX2UKGgGR0CTP+zEaVD8aAdN6ANoCEdAq7r+S2Yv4HV9lChoBkdAlwmJggHNYGgHTegDaAhHQKu/pu4PPLR1fZQoaAZHQJW2TgBLf1poB03oA2gIR0Crv+tVJcxCdX2UKGgGR0CU4BSpR4yHaAdN6ANoCEdAq8WQ77sOXnV9lChoBkdAkuTpsTFl1GgHTegDaAhHQKvHGDdxhlV1fZQoaAZHQIvS9bNbC79oB03oA2gIR0CrzYupjtojdX2UKGgGR0CVbfdnTRYzaAdN6ANoCEdAq84En1Fpf3V9lChoBkdAllcftMPBi2gHTegDaAhHQKvX9bvgFX91fZQoaAZHQJR2X4Kx9ohoB03oA2gIR0Cr2pqZML4OdX2UKGgGR0CRo5P557gLaAdN6ANoCEdAq+CJTVDrq3V9lChoBkdAk0aAUxmCiGgHTegDaAhHQKvg0tNi6QN1fZQoaAZHQIt++eOGTLZoB03oA2gIR0Cr5rpda+vhdX2UKGgGR0CQ6YUipvP1aAdN6ANoCEdAq+goLy+YdHV9lChoBkdAlfyu7QLNOmgHTegDaAhHQKvswTFl05l1fZQoaAZHQJT24Dq4YrJoB03oA2gIR0Cr7Q/ZmI0qdX2UKGgGR0CXWiVk+X7caAdN6ANoCEdAq/P9dgOSXHV9lChoBkdAkzaTEaVD8mgHTegDaAhHQKv2Pf3N9ph1fZQoaAZHQJai84FRpDhoB03oA2gIR0Cr/Pz6BRQ8dX2UKGgGR0CVpPhIvrWzaAdN6ANoCEdAq/1GPzWf9XV9lChoBkdAlIOIpMHryGgHTegDaAhHQKwC/B1s+FF1fZQoaAZHQJJH+BUaQ3hoB03oA2gIR0CsBHFjVhCudX2UKGgGR0CUaMXiiqQzaAdN6ANoCEdArAk4HiWE9XV9lChoBkdAkOQgDV6NVGgHTegDaAhHQKwJh2s7uD11fZQoaAZHQJUrHHwPRRdoB03oA2gIR0CsDzeAd4mkdX2UKGgGR0CU45bgjyFxaAdN6ANoCEdArBE3atcOb3V9lChoBkdAlUIgrlNlAmgHTegDaAhHQKwYpTxXnyN1fZQoaAZHQJQEkDr7fpFoB03oA2gIR0CsGRxBmf5DdX2UKGgGR0CTbIRRdhRZaAdN6ANoCEdArB8wNqgyunV9lChoBkdAkoyb+98JD2gHTegDaAhHQKwgj1oQFs51fZQoaAZHQJOI2nLq2SdoB03oA2gIR0CsJROSW7e3dX2UKGgGR0CTyJN8ma6SaAdN6ANoCEdArCVdYMfA9HV9lChoBkdAlzu5+pfhM2gHTegDaAhHQKwq7Lq2SdR1fZQoaAZHQJMxXzDn/1hoB03oA2gIR0CsLEyJbdJrdX2UKGgGR0CYZpbKA8SxaAdN6ANoCEdArDJ0o4MnZ3V9lChoBkdAmG6cSkCV8mgHTegDaAhHQKwy5VFQVKx1fZQoaAZHQJTyy7xusLhoB03oA2gIR0CsPbdPci4bdX2UKGgGR0CWfiybhFVlaAdN6ANoCEdArEAaxmkFfXV9lChoBkdAlk3B1Tzd12gHTegDaAhHQKxFwfT1CgN1fZQoaAZHQJVDsPz4DcNoB03oA2gIR0CsRgnZCfHxdX2UKGgGR0CTDZlANXo1aAdN6ANoCEdArEvNuBMBZXV9lChoBkdAlUGsFyJbdWgHTegDaAhHQKxNNzbvgFZ1fZQoaAZHQJB9vawljVhoB03oA2gIR0CsVAzyrgfmdX2UKGgGR0CTJ90btJFtaAdN6ANoCEdArFSF1wHZ9XV9lChoBkdAke+Gq5sj3WgHTegDaAhHQKxcCSq2jO91fZQoaAZHQJCrb+bVjI9oB03oA2gIR0CsXXLvTgEVdX2UKGgGR0CYIFH9FWn1aAdN6ANoCEdArGIqA2AG0XV9lChoBkdAkYsj37DVIGgHTegDaAhHQKxidN3W4Ex1fZQoaAZHQJXc5+LFXJZoB03oA2gIR0CsaEG+0w8GdX2UKGgGR0CQzeD8cdYGaAdN6ANoCEdArGmoXoC+13V9lChoBkdAlUvQKKHfuWgHTegDaAhHQKxu8MRYigV1fZQoaAZHQJYMbA8B+4NoB03oA2gIR0Csb101Q66rdX2UKGgGR0CRuhuAI6bOaAdN6ANoCEdArHhPP3SKFnV9lChoBkdAlPeqhpQDWGgHTegDaAhHQKx5tuKoAGV1fZQoaAZHQJhPlt2s7uFoB03oA2gIR0CsfrNvXK8tdX2UKGgGR0CWgn9+w1R+aAdN6ANoCEdArH79UhmoSHV9lChoBkdAktG/114gR2gHTegDaAhHQKyE2bADaGp1fZQoaAZHQJVs61og3cZoB03oA2gIR0Cshm4qG1x9dX2UKGgGR0CYZLj3Ehq1aAdN6ANoCEdArIsUl9jPOnV9lChoBkdAj+qrJSzgM2gHTegDaAhHQKyLWwMYuTR1fZQoaAZHQJSmjGgi/wloB03oA2gIR0CslAXmV7hOdX2UKGgGR0CU+3c6/7BPaAdN6ANoCEdArJZU/B3zMHV9lChoBkdAk2AmMfigkGgHTegDaAhHQKybOeDnNgV1fZQoaAZHQI/5Y/NZ/1BoB03oA2gIR0Csm4idrftQdX2UKGgGR0CQZ4pcX3xnaAdN6ANoCEdArKLfdXT3I3V9lChoBkdAllInNgSey2gHTegDaAhHQKylNoh6jWV1fZQoaAZHQJFR7Fn7HhloB03oA2gIR0CssCkJBw+/dX2UKGgGR0CYCPNAC4jKaAdN6ANoCEdArLC5LVWjoXV9lChoBkdAiEL+BpYcN2gHTegDaAhHQKy43IPsiSt1fZQoaAZHQIUg0cfeUINoB03oA2gIR0CsukkRradudX2UKGgGR0CRjjdp7CzkaAdN6ANoCEdArL8AhwEQoXV9lChoBkdAidudcKPXCmgHTegDaAhHQKy/SXO4XoF1fZQoaAZHQIt6F8uzyBloB03oA2gIR0CsxTXrMTvidX2UKGgGR0CEdowaBI4EaAdN6ANoCEdArMas90RvnHV9lChoBkdAl3Cg9/z8QGgHTegDaAhHQKzL+okzGgl1fZQoaAZHQI4HCqjrRjVoB03oA2gIR0CszG1S4vvjdX2UKGgGR0CGZfMbFS88aAdN6ANoCEdArNV5AQg9vHV9lChoBkdAk4wpa7mMfmgHTegDaAhHQKzW1oRIz311fZQoaAZHQJUSZJrcj7hoB03oA2gIR0Cs23SGBWgfdX2UKGgGR0CI72Xm/336aAdN6ANoCEdArNu/KuB+WnV9lChoBkdAlL3AuZkTYmgHTegDaAhHQKzhdugpSaV1fZQoaAZHQJOdH8n/kvNoB03oA2gIR0Cs4trk8zRAdX2UKGgGR0CWwlFc6eXiaAdN6ANoCEdArOeI5aNdaHV9lChoBkdAlm7c+3YthGgHTegDaAhHQKznz1Hvtt11fZQoaAZHQJLVGJFb3XZoB03oA2gIR0Cs75nX/YJ3dX2UKGgGR0CWcTKCg9NfaAdN6ANoCEdArPHaIUJv53V9lChoBkdAkmAWxptaZGgHTegDaAhHQKz3n6jWTX91fZQoaAZHQJGsjOqvNeNoB03oA2gIR0Cs9+idSVGDdX2UKGgGR0CSkI4u9OARaAdN6ANoCEdArP3FrdnCf3V9lChoBkdAiCkasIVuaWgHTegDaAhHQKz/LjYqXnh1fZQoaAZHQJTgYB2fTThoB03oA2gIR0CtA90m2LHddX2UKGgGR0CVHwl+3H7xaAdN6ANoCEdArQQoppeu3nV9lChoBkdAlBTRTOxB3WgHTegDaAhHQK0L4WWQfZF1fZQoaAZHQJIiLggow25oB03oA2gIR0CtDkEy+HrRdX2UKGgGR0CP+kSL61staAdN6ANoCEdArRclJlJ6IHV9lChoBkdAhs0v3ztkWmgHTegDaAhHQK0XsKjSG8F1fZQoaAZHQIZjDsByS3doB03oA2gIR0CtHv5YYBNmdX2UKGgGR0CSoLvS+g14aAdN6ANoCEdArSBZOHnEEXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:305241ad1768eed64e59ed1be59257460cffde1eb163f44f9edd3adfea86b216
|
3 |
+
size 1072631
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1337.327197335218, "std_reward": 94.07807412256939, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-11T17:46:23.494249"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d161d59dff8c09ff7ad58e76a7255e57527119f1318e9161310df25c7a17310
|
3 |
+
size 2129
|