Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1396.12 +/- 265.06
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6240e751e26b061f963ac804d436ac4f3160b066c378be1cdc5769ee74f26209
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7efca16de8b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efca16de940>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efca16de9d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efca16dea60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7efca16deaf0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7efca16deb80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7efca16dec10>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efca16deca0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7efca16ded30>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efca16dedc0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efca16dee50>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7efca16deee0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7efca16d6c30>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1676899899742289274,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMzCXj/81xG/fEhZPGyZAz5kxNw+0PYIwJH/rb3MjHA+TF5IPZfPur/2xA2+MuE8P9u9Wz+Mp90+r0wPv03RBcD/gR0962cKQODqg7+X6w1A2BhiPnLMh7+AQLY9MNb7vaZItb9I6ro+PlHOv2PUX7//2gI/9QDuvnpEGD40l5K/A6oHP3Uhfj7sywU/GBKgPkVNA7/wDgi+Uor8vPm/uj5pGEM9uUJpQJDJP78LdP+9i/+BP89QRUAAt6O+zG5uP+C7Mz5BqHJA72AkPzWaHL6mSLW/SOq6PsPSHj+lZZI/TlnuPojusr+BNXLA+ctLv6zDyb09B5k+WJwMP6LJi7r2dwg/Zp6BP6LBXT+QPLq+v//MPwwAmbsxLCS+Lbz4P93ZAz9Dt8u+7LXDvaUOjb6KoHw/vJUnP1TGnz9rgVC9WcE0PzlPL8DD0h4/pWWSP7+25z+VO+G+5+g2Pkovt74lMg+/HPaov5Sxd78WdkC/lk30vi56xb/3M2o+qzZPvu0k379VV1Y/bFZDPZIrEcAQwpM/HntoQIFU2b9I58k/z14Jv9b2lD/HfG8/ECqdP6ZItb9I6ro+PlHOv2PUX7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADc8KE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKRFUPAAAAAC90Pu/AAAAAFAsED4AAAAAU/kAQAAAAAAWYAw+AAAAADjX8D8AAAAA/jNxPQAAAADAvfC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtl1PNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFgxyrwAAAAALYX4vwAAAAD2AcC8AAAAAJ7i8j8AAAAAGjomOgAAAACDZNw/AAAAADYdDr4AAAAAc8TivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsgaTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC1wJS9AAAAALyE878AAAAA0cBzvQAAAAAsAvU/AAAAAOLB3z0AAAAA92/mPwAAAAB5aOi8AAAAADeV6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC/lBU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAeIn+PQAAAACvdfe/AAAAAKOZjT0AAAAAnfPZPwAAAACxsVk9AAAAAHhe/D8AAAAA5gHDvQAAAADU8du/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ067SLIgeSMAWyUTegDjAF0lEdAq95J5E+gUXV9lChoBkdAm1V4YNy5qmgHTegDaAhHQKvkLvkRzzV1fZQoaAZHQJmgSoIfKZFoB03oA2gIR0Cr5Pw7cO9WdX2UKGgGR0CerpV2zOX3aAdN6ANoCEdAq+V3ffoA4nV9lChoBkdAgUP9PtUn5WgHTegDaAhHQKvvSre67NB1fZQoaAZHQJ0vXlnyup1oB03oA2gIR0Cr82axX4j9dX2UKGgGR0CdTu81Gb1AaAdN6ANoCEdAq/Pli8WbgHV9lChoBkdAns2HV5KODWgHTegDaAhHQKv0NS9du511fZQoaAZHQJgcK9FnZkFoB03oA2gIR0Cr+/GiHqNZdX2UKGgGR0CXDL9+gDigaAdN6ANoCEdArACq22G7BnV9lChoBkdAmmGie7L+xWgHTegDaAhHQKwBZwTdtVJ1fZQoaAZHQJp5O4MF2V5oB03oA2gIR0CsAdtSZSeidX2UKGgGR0CUxUBczImxaAdN6ANoCEdArAzgptrKvHV9lChoBkdAntpYyO7xu2gHTegDaAhHQKwRA1UlzEJ1fZQoaAZHQJlWRsdkrgBoB03oA2gIR0CsEYZHmRvFdX2UKGgGR0Ce1pAM2FWXaAdN6ANoCEdArBHUoDxLCnV9lChoBkdAmDAnWFvhqGgHTegDaAhHQKwZn7+kxh51fZQoaAZHQJnJ8bEP1+RoB03oA2gIR0CsHcVZLZi/dX2UKGgGR0Cab/YgaFVUaAdN6ANoCEdArB5CFh5PdnV9lChoBkdAmV83IhhYvGgHTegDaAhHQKwejQ8fV7R1fZQoaAZHQJyRG1rqMWJoB03oA2gIR0CsKrtDc/MXdX2UKGgGR0CfflgNPP9laAdN6ANoCEdArC75yXD3unV9lChoBkdAnD+HAh0QsmgHTegDaAhHQKwveNEPUa11fZQoaAZHQJuYrwe/5+JoB03oA2gIR0CsL8HxJ/XodX2UKGgGR0CfuvWM0gr6aAdN6ANoCEdArDdZVKf4AXV9lChoBkdAn0S91U2kz2gHTegDaAhHQKw7cmrKeTV1fZQoaAZHQKAnzcmBvrJoB03oA2gIR0CsO/Jul41QdX2UKGgGR0CgJFGwzLwGaAdN6ANoCEdArDw8gntv43V9lChoBkdAoTS7teD3/WgHTegDaAhHQKxG7KFIuoR1fZQoaAZHQJtbT6KtPpJoB03oA2gIR0CsTFB8QZn+dX2UKGgGR0CgMe1XV9WqaAdN6ANoCEdArEzE7MgU13V9lChoBkdAn2quKwY+CGgHTegDaAhHQKxNDwLmZE51fZQoaAZHQJ8e3CBPKuBoB03oA2gIR0CsVMvz4DcNdX2UKGgGR0Cejcv4M4LkaAdN6ANoCEdArFjtTxXnyXV9lChoBkdAoE+qeumrKmgHTegDaAhHQKxZZSHdoFp1fZQoaAZHQKF+5dPci4doB03oA2gIR0CsWa+yquKXdX2UKGgGR0ChsEcbR4QjaAdN6ANoCEdArGMQ31jAi3V9lChoBkdAoLMq8e0XxmgHTegDaAhHQKxpyOU+s5p1fZQoaAZHQJ0r7YJ3PiVoB03oA2gIR0CsakIqLCN0dX2UKGgGR0CeHXzzmOlwaAdN6ANoCEdArGqOpAD7qXV9lChoBkdAnCIT8pCrtGgHTegDaAhHQKxyR1PFefJ1fZQoaAZHQJ1Q40/GEPFoB03oA2gIR0CsdmhzmwJPdX2UKGgGR0CbiyFo+OfeaAdN6ANoCEdArHbi/CZWrHV9lChoBkdAoFc/S4OMEWgHTegDaAhHQKx3MIVM23t1fZQoaAZHQJ+yKqJdjXpoB03oA2gIR0Csf2H8CPp7dX2UKGgGR0CgJhzCcf/4aAdN6ANoCEdArIX/7FbV0HV9lChoBkdAnzLzIzWPLmgHTegDaAhHQKyGxOSGJvZ1fZQoaAZHQKGvBicXm/5oB03oA2gIR0Csh0E0iyIIdX2UKGgGR0Cg1M4dQwbmaAdN6ANoCEdArI++2PT5PHV9lChoBkdAnHddKmKqGWgHTegDaAhHQKyT+XBP9DR1fZQoaAZHQJzU/FId2gZoB03oA2gIR0CslHvkRzzVdX2UKGgGR0CfUssLv1DjaAdN6ANoCEdArJTGy/sVtXV9lChoBkdAnl4hagVXWGgHTegDaAhHQKycc8HObAl1fZQoaAZHQJ5BWce8wpRoB03oA2gIR0Csom4RdyDJdX2UKGgGR0CeE7iCaqjraAdN6ANoCEdArKM3jENvwXV9lChoBkdAn0nR2OhkAmgHTegDaAhHQKyjtotcv/R1fZQoaAZHQKHFXBUJfIFoB03oA2gIR0CsrYeo1k1/dX2UKGgGR0CeqQbLlmvoaAdN6ANoCEdArLGqO/+Kj3V9lChoBkdAoGC46dUbUGgHTegDaAhHQKyyJrLyMDR1fZQoaAZHQKEPVJ7sv7FoB03oA2gIR0CssnRE4NqhdX2UKGgGR0Ca4Rb6xgRcaAdN6ANoCEdArLo4JqqOtHV9lChoBkdAmkbTPfKp1mgHTegDaAhHQKy/FaRISUV1fZQoaAZHQJtO/k0aZQZoB03oA2gIR0Csv9FcIJJHdX2UKGgGR0CcItDUVi4KaAdN6ANoCEdArMBLufEn9nV9lChoBkdAnxzwmmce82gHTegDaAhHQKzLSrGR3eN1fZQoaAZHQJ8uRkvsZ51oB03oA2gIR0Csz4dhy8zzdX2UKGgGR0Cgbufx+a0AaAdN6ANoCEdArNAIukDZDnV9lChoBkdAnzZMl9jPOmgHTegDaAhHQKzQVjI7vG91fZQoaAZHQKE3z/sE7nxoB03oA2gIR0Cs2Bp04iosdX2UKGgGR0CgCpFme18caAdN6ANoCEdArNxn8Q7LdXV9lChoBkdAoe8jyBkI5mgHTegDaAhHQKzc/SuQp4N1fZQoaAZHQKGR0TcIqsloB03oA2gIR0Cs3X3+ERJ3dX2UKGgGR0ChECJGOMl1aAdN6ANoCEdArOl+HDaXbHV9lChoBkdAn/mvqxC6YmgHTegDaAhHQKztqtozvZ11fZQoaAZHQJ22/eLvTgFoB03oA2gIR0Cs7iNCzC1rdX2UKGgGR0CfJ/9LYf4iaAdN6ANoCEdArO5vJtBOYnV9lChoBkdAnJPVc6eXiWgHTegDaAhHQKz2BCoCMgl1fZQoaAZHQJohidEsrd5oB03oA2gIR0Cs+j717IDHdX2UKGgGR0CcoX0yxiXqaAdN6ANoCEdArPrFcW0qpnV9lChoBkdAnPX16Vt4zWgHTegDaAhHQKz7FKJVKf51fZQoaAZHQKBMeaAFxGVoB03oA2gIR0CtBm8+iaiLdX2UKGgGR0Ccg3JEYwZgaAdN6ANoCEdArQuCuGKyfXV9lChoBkdAn4Agjt5UtWgHTegDaAhHQK0MBfmcOLB1fZQoaAZHQJye+sRxtHhoB03oA2gIR0CtDFGH58BudX2UKGgGR0Cd3XcTrVvuaAdN6ANoCEdArRQoDRtxdnV9lChoBkdAm9DT6vaDf2gHTegDaAhHQK0YY4BFNL11fZQoaAZHQJyzXs6aLGdoB03oA2gIR0CtGNzQ/oq1dX2UKGgGR0Cam52CuloEaAdN6ANoCEdArRkom9g4O3V9lChoBkdAmzYGxY7q6mgHTegDaAhHQK0jWLCvX9R1fZQoaAZHQJzBmgDifg9oB03oA2gIR0CtKae0w8GLdX2UKGgGR0CcuRA9V3lkaAdN6ANoCEdArSokkhRqGnV9lChoBkdAnDRNJFspHGgHTegDaAhHQK0qdZQHiWF1fZQoaAZHQKAGVLr5ZbJoB03oA2gIR0CtMkEhzNlidX2UKGgGR0CdtxFXq7iAaAdN6ANoCEdArTZvEwWWQnV9lChoBkdAmeNJ17pmmWgHTegDaAhHQK026h4+r2h1fZQoaAZHQJjMKXyAhB9oB03oA2gIR0CtNzcIqsltdX2UKGgGR0CUtydz4k/saAdN6ANoCEdArUBdRP420nV9lChoBkdAmdXHkPtlZ2gHTegDaAhHQK1HZkiliz91fZQoaAZHQJnJYcMmWt5oB03oA2gIR0CtSDPJaJQ+dX2UKGgGR0CYtcYSg5BDaAdN6ANoCEdArUiVXRw6yXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af5e8ec7161e1e22fe0d51aaffe00528423e099d62da3950cae07322d6a12b86
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd9f516fe798998522a4846eca1b5362a20f7321dc17a4532b2c042a46eecbac
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efca16de8b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efca16de940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efca16de9d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efca16dea60>", "_build": "<function ActorCriticPolicy._build at 0x7efca16deaf0>", "forward": "<function ActorCriticPolicy.forward at 0x7efca16deb80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efca16dec10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efca16deca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7efca16ded30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efca16dedc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efca16dee50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efca16deee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efca16d6c30>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676899899742289274, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMzCXj/81xG/fEhZPGyZAz5kxNw+0PYIwJH/rb3MjHA+TF5IPZfPur/2xA2+MuE8P9u9Wz+Mp90+r0wPv03RBcD/gR0962cKQODqg7+X6w1A2BhiPnLMh7+AQLY9MNb7vaZItb9I6ro+PlHOv2PUX7//2gI/9QDuvnpEGD40l5K/A6oHP3Uhfj7sywU/GBKgPkVNA7/wDgi+Uor8vPm/uj5pGEM9uUJpQJDJP78LdP+9i/+BP89QRUAAt6O+zG5uP+C7Mz5BqHJA72AkPzWaHL6mSLW/SOq6PsPSHj+lZZI/TlnuPojusr+BNXLA+ctLv6zDyb09B5k+WJwMP6LJi7r2dwg/Zp6BP6LBXT+QPLq+v//MPwwAmbsxLCS+Lbz4P93ZAz9Dt8u+7LXDvaUOjb6KoHw/vJUnP1TGnz9rgVC9WcE0PzlPL8DD0h4/pWWSP7+25z+VO+G+5+g2Pkovt74lMg+/HPaov5Sxd78WdkC/lk30vi56xb/3M2o+qzZPvu0k379VV1Y/bFZDPZIrEcAQwpM/HntoQIFU2b9I58k/z14Jv9b2lD/HfG8/ECqdP6ZItb9I6ro+PlHOv2PUX7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADc8KE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKRFUPAAAAAC90Pu/AAAAAFAsED4AAAAAU/kAQAAAAAAWYAw+AAAAADjX8D8AAAAA/jNxPQAAAADAvfC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtl1PNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFgxyrwAAAAALYX4vwAAAAD2AcC8AAAAAJ7i8j8AAAAAGjomOgAAAACDZNw/AAAAADYdDr4AAAAAc8TivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsgaTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC1wJS9AAAAALyE878AAAAA0cBzvQAAAAAsAvU/AAAAAOLB3z0AAAAA92/mPwAAAAB5aOi8AAAAADeV6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC/lBU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAeIn+PQAAAACvdfe/AAAAAKOZjT0AAAAAnfPZPwAAAACxsVk9AAAAAHhe/D8AAAAA5gHDvQAAAADU8du/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ067SLIgeSMAWyUTegDjAF0lEdAq95J5E+gUXV9lChoBkdAm1V4YNy5qmgHTegDaAhHQKvkLvkRzzV1fZQoaAZHQJmgSoIfKZFoB03oA2gIR0Cr5Pw7cO9WdX2UKGgGR0CerpV2zOX3aAdN6ANoCEdAq+V3ffoA4nV9lChoBkdAgUP9PtUn5WgHTegDaAhHQKvvSre67NB1fZQoaAZHQJ0vXlnyup1oB03oA2gIR0Cr82axX4j9dX2UKGgGR0CdTu81Gb1AaAdN6ANoCEdAq/Pli8WbgHV9lChoBkdAns2HV5KODWgHTegDaAhHQKv0NS9du511fZQoaAZHQJgcK9FnZkFoB03oA2gIR0Cr+/GiHqNZdX2UKGgGR0CXDL9+gDigaAdN6ANoCEdArACq22G7BnV9lChoBkdAmmGie7L+xWgHTegDaAhHQKwBZwTdtVJ1fZQoaAZHQJp5O4MF2V5oB03oA2gIR0CsAdtSZSeidX2UKGgGR0CUxUBczImxaAdN6ANoCEdArAzgptrKvHV9lChoBkdAntpYyO7xu2gHTegDaAhHQKwRA1UlzEJ1fZQoaAZHQJlWRsdkrgBoB03oA2gIR0CsEYZHmRvFdX2UKGgGR0Ce1pAM2FWXaAdN6ANoCEdArBHUoDxLCnV9lChoBkdAmDAnWFvhqGgHTegDaAhHQKwZn7+kxh51fZQoaAZHQJnJ8bEP1+RoB03oA2gIR0CsHcVZLZi/dX2UKGgGR0Cab/YgaFVUaAdN6ANoCEdArB5CFh5PdnV9lChoBkdAmV83IhhYvGgHTegDaAhHQKwejQ8fV7R1fZQoaAZHQJyRG1rqMWJoB03oA2gIR0CsKrtDc/MXdX2UKGgGR0CfflgNPP9laAdN6ANoCEdArC75yXD3unV9lChoBkdAnD+HAh0QsmgHTegDaAhHQKwveNEPUa11fZQoaAZHQJuYrwe/5+JoB03oA2gIR0CsL8HxJ/XodX2UKGgGR0CfuvWM0gr6aAdN6ANoCEdArDdZVKf4AXV9lChoBkdAn0S91U2kz2gHTegDaAhHQKw7cmrKeTV1fZQoaAZHQKAnzcmBvrJoB03oA2gIR0CsO/Jul41QdX2UKGgGR0CgJFGwzLwGaAdN6ANoCEdArDw8gntv43V9lChoBkdAoTS7teD3/WgHTegDaAhHQKxG7KFIuoR1fZQoaAZHQJtbT6KtPpJoB03oA2gIR0CsTFB8QZn+dX2UKGgGR0CgMe1XV9WqaAdN6ANoCEdArEzE7MgU13V9lChoBkdAn2quKwY+CGgHTegDaAhHQKxNDwLmZE51fZQoaAZHQJ8e3CBPKuBoB03oA2gIR0CsVMvz4DcNdX2UKGgGR0Cejcv4M4LkaAdN6ANoCEdArFjtTxXnyXV9lChoBkdAoE+qeumrKmgHTegDaAhHQKxZZSHdoFp1fZQoaAZHQKF+5dPci4doB03oA2gIR0CsWa+yquKXdX2UKGgGR0ChsEcbR4QjaAdN6ANoCEdArGMQ31jAi3V9lChoBkdAoLMq8e0XxmgHTegDaAhHQKxpyOU+s5p1fZQoaAZHQJ0r7YJ3PiVoB03oA2gIR0CsakIqLCN0dX2UKGgGR0CeHXzzmOlwaAdN6ANoCEdArGqOpAD7qXV9lChoBkdAnCIT8pCrtGgHTegDaAhHQKxyR1PFefJ1fZQoaAZHQJ1Q40/GEPFoB03oA2gIR0CsdmhzmwJPdX2UKGgGR0CbiyFo+OfeaAdN6ANoCEdArHbi/CZWrHV9lChoBkdAoFc/S4OMEWgHTegDaAhHQKx3MIVM23t1fZQoaAZHQJ+yKqJdjXpoB03oA2gIR0Csf2H8CPp7dX2UKGgGR0CgJhzCcf/4aAdN6ANoCEdArIX/7FbV0HV9lChoBkdAnzLzIzWPLmgHTegDaAhHQKyGxOSGJvZ1fZQoaAZHQKGvBicXm/5oB03oA2gIR0Csh0E0iyIIdX2UKGgGR0Cg1M4dQwbmaAdN6ANoCEdArI++2PT5PHV9lChoBkdAnHddKmKqGWgHTegDaAhHQKyT+XBP9DR1fZQoaAZHQJzU/FId2gZoB03oA2gIR0CslHvkRzzVdX2UKGgGR0CfUssLv1DjaAdN6ANoCEdArJTGy/sVtXV9lChoBkdAnl4hagVXWGgHTegDaAhHQKycc8HObAl1fZQoaAZHQJ5BWce8wpRoB03oA2gIR0Csom4RdyDJdX2UKGgGR0CeE7iCaqjraAdN6ANoCEdArKM3jENvwXV9lChoBkdAn0nR2OhkAmgHTegDaAhHQKyjtotcv/R1fZQoaAZHQKHFXBUJfIFoB03oA2gIR0CsrYeo1k1/dX2UKGgGR0CeqQbLlmvoaAdN6ANoCEdArLGqO/+Kj3V9lChoBkdAoGC46dUbUGgHTegDaAhHQKyyJrLyMDR1fZQoaAZHQKEPVJ7sv7FoB03oA2gIR0CssnRE4NqhdX2UKGgGR0Ca4Rb6xgRcaAdN6ANoCEdArLo4JqqOtHV9lChoBkdAmkbTPfKp1mgHTegDaAhHQKy/FaRISUV1fZQoaAZHQJtO/k0aZQZoB03oA2gIR0Csv9FcIJJHdX2UKGgGR0CcItDUVi4KaAdN6ANoCEdArMBLufEn9nV9lChoBkdAnxzwmmce82gHTegDaAhHQKzLSrGR3eN1fZQoaAZHQJ8uRkvsZ51oB03oA2gIR0Csz4dhy8zzdX2UKGgGR0Cgbufx+a0AaAdN6ANoCEdArNAIukDZDnV9lChoBkdAnzZMl9jPOmgHTegDaAhHQKzQVjI7vG91fZQoaAZHQKE3z/sE7nxoB03oA2gIR0Cs2Bp04iosdX2UKGgGR0CgCpFme18caAdN6ANoCEdArNxn8Q7LdXV9lChoBkdAoe8jyBkI5mgHTegDaAhHQKzc/SuQp4N1fZQoaAZHQKGR0TcIqsloB03oA2gIR0Cs3X3+ERJ3dX2UKGgGR0ChECJGOMl1aAdN6ANoCEdArOl+HDaXbHV9lChoBkdAn/mvqxC6YmgHTegDaAhHQKztqtozvZ11fZQoaAZHQJ22/eLvTgFoB03oA2gIR0Cs7iNCzC1rdX2UKGgGR0CfJ/9LYf4iaAdN6ANoCEdArO5vJtBOYnV9lChoBkdAnJPVc6eXiWgHTegDaAhHQKz2BCoCMgl1fZQoaAZHQJohidEsrd5oB03oA2gIR0Cs+j717IDHdX2UKGgGR0CcoX0yxiXqaAdN6ANoCEdArPrFcW0qpnV9lChoBkdAnPX16Vt4zWgHTegDaAhHQKz7FKJVKf51fZQoaAZHQKBMeaAFxGVoB03oA2gIR0CtBm8+iaiLdX2UKGgGR0Ccg3JEYwZgaAdN6ANoCEdArQuCuGKyfXV9lChoBkdAn4Agjt5UtWgHTegDaAhHQK0MBfmcOLB1fZQoaAZHQJye+sRxtHhoB03oA2gIR0CtDFGH58BudX2UKGgGR0Cd3XcTrVvuaAdN6ANoCEdArRQoDRtxdnV9lChoBkdAm9DT6vaDf2gHTegDaAhHQK0YY4BFNL11fZQoaAZHQJyzXs6aLGdoB03oA2gIR0CtGNzQ/oq1dX2UKGgGR0Cam52CuloEaAdN6ANoCEdArRkom9g4O3V9lChoBkdAmzYGxY7q6mgHTegDaAhHQK0jWLCvX9R1fZQoaAZHQJzBmgDifg9oB03oA2gIR0CtKae0w8GLdX2UKGgGR0CcuRA9V3lkaAdN6ANoCEdArSokkhRqGnV9lChoBkdAnDRNJFspHGgHTegDaAhHQK0qdZQHiWF1fZQoaAZHQKAGVLr5ZbJoB03oA2gIR0CtMkEhzNlidX2UKGgGR0CdtxFXq7iAaAdN6ANoCEdArTZvEwWWQnV9lChoBkdAmeNJ17pmmWgHTegDaAhHQK026h4+r2h1fZQoaAZHQJjMKXyAhB9oB03oA2gIR0CtNzcIqsltdX2UKGgGR0CUtydz4k/saAdN6ANoCEdArUBdRP420nV9lChoBkdAmdXHkPtlZ2gHTegDaAhHQK1HZkiliz91fZQoaAZHQJnJYcMmWt5oB03oA2gIR0CtSDPJaJQ+dX2UKGgGR0CYtcYSg5BDaAdN6ANoCEdArUiVXRw6yXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff4b4a2892e0dd5a2c8a3e86f84dc71d9d79d103730b75663591e9de4f5ff90d
|
3 |
+
size 1168590
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1396.1217678097892, "std_reward": 265.05643273038027, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-20T14:41:38.543340"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61b3faddbc2052801c3246d8ac054c566a87758cdc17fd80334328293305d375
|
3 |
+
size 2129
|