File size: 19,913 Bytes
888e153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:7960
- loss:CoSENTLoss
base_model: sentence-transformers/all-mpnet-base-v2
widget:
- source_sentence: 'Okay, I got it. So just to give you the second price if ever for
    the Samsung Galaxy is ##. It comes with a ## this one. Five gigabyte of data or
    ## gigabyte it will only it will only give you a £39.05. That is for that is for
    the #### G but I do suggest that you go with the equipment before because that
    is only around £31.'
  sentences:
  - I can provide to you . Are you happy to go ahead with this?
  - Thank you for calling over to my name is how can I help you.
  - Thank you and could you please confirm to me what is your full name.
- source_sentence: His number well, so you're looking to travel abroad anytime soon.
  sentences:
  - I'm now going to read out some terms and conditions to complete the order.
  - Can you provide me with character number one of your security answer please?
  - So looking at your usage of your mobile data. I just wanna share with you that
    your usage for the past six months. It says here it's up to gigabytes of mobile
    data. Okay and in order for us to.
- source_sentence: Hello. Hi, thank you so much for patiently waiting. So, I'd look
    into our accessory so for the airbags the one that we have an ongoing promotion
    right now for the accessories is the airport second generation. So you can.
  sentences:
  - The same discounts you can have been added as an additional line and do into your
    account. It needs be entitled to % discount off of the costs.
  - Are you planning to get a new sim only plan or a new phone?
  - I'm now going to send you a one time code. The first message is a warning to not
    give the code to scammers pretending to work for O2. The second message is the
    code to continue with your request.
- source_sentence: Okay, so you can know just spend. Yeah, but anytime via web chat
    or customer Services. Okay.
  sentences:
  - So looking at your usage of your mobile data. I just wanna share with you that
    your usage for the past six months. It says here it's up to gigabytes of mobile
    data. Okay and in order for us to.
  - Checking your account I can see you are on the and you have been paying £ per
    month. Is that correct?
  - So looking at your usage of your mobile data. I just wanna share with you that
    your usage for the past six months. It says here it's up to gigabytes of mobile
    data. Okay and in order for us to.
- source_sentence: 'Oh, okay, so just the iPhone ## only.'
  sentences:
  - So I'm actually now checking here just for me to get this deal that you had seen.
  - I'm now going to send you a one time code. The first message is a warning to not
    give the code to scammers pretending to work for O2. The second message is the
    code to continue with your request.
  - Yes, that's correct for know. Our price is £ and then it won't go down to £ after
    you apply the discount.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev
      type: sts_dev
    metrics:
    - type: pearson_cosine
      value: 0.5906538719225906
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.2789361723892506
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.630943535003128
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.27814879203445947
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.6348761842006896
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.2789361726048565
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.5906538598201696
      name: Pearson Dot
    - type: spearman_dot
      value: 0.2789361717424329
      name: Spearman Dot
    - type: pearson_max
      value: 0.6348761842006896
      name: Pearson Max
    - type: spearman_max
      value: 0.2789361726048565
      name: Spearman Max
---

# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("enochlev/xlm-similarity-large")
# Run inference
sentences = [
    'Oh, okay, so just the iPhone ## only.',
    "Yes, that's correct for know. Our price is £ and then it won't go down to £ after you apply the discount.",
    "I'm now going to send you a one time code. The first message is a warning to not give the code to scammers pretending to work for O2. The second message is the code to continue with your request.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts_dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric             | Value      |
|:-------------------|:-----------|
| pearson_cosine     | 0.5907     |
| spearman_cosine    | 0.2789     |
| pearson_manhattan  | 0.6309     |
| spearman_manhattan | 0.2781     |
| pearson_euclidean  | 0.6349     |
| spearman_euclidean | 0.2789     |
| pearson_dot        | 0.5907     |
| spearman_dot       | 0.2789     |
| pearson_max        | 0.6349     |
| **spearman_max**   | **0.2789** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 7,960 training samples
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | text1                                                                             | text2                                                                              | label                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             | float                                                          |
  | details | <ul><li>min: 5 tokens</li><li>mean: 20.94 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 28.35 tokens</li><li>max: 71 tokens</li></ul> | <ul><li>min: 0.2</li><li>mean: 0.22</li><li>max: 1.0</li></ul> |
* Samples:
  | text1                                                                      | text2                                                                                                                                                      | label            |
  |:---------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
  | <code>Hello, welcome to O2. My name is __ How can I help you today?</code> | <code>Thank you for calling over to my name is how can I help you.</code>                                                                                  | <code>1.0</code> |
  | <code>Hello, welcome to O2. My name is __ How can I help you today?</code> | <code>I was about to ask us to confirm the email address that we have on the account or on your file. So what I can you tell me your email address.</code> | <code>0.2</code> |
  | <code>Hello, welcome to O2. My name is __ How can I help you today?</code> | <code>Are you planning to get a new sim only plan or a new phone?</code>                                                                                   | <code>0.2</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 1,980 evaluation samples
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | text1                                                                              | text2                                                                              | label                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | float                                                          |
  | details | <ul><li>min: 8 tokens</li><li>mean: 36.02 tokens</li><li>max: 241 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 28.35 tokens</li><li>max: 71 tokens</li></ul> | <ul><li>min: 0.2</li><li>mean: 0.22</li><li>max: 1.0</li></ul> |
* Samples:
  | text1                                                                                                                                                                                             | text2                                                                                                                                                        | label            |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
  | <code>So for example, since this is for the 2nd line bro more. So if you have any family that you want to add on your account. Yeah, we do have a same offer plan. This offer promo today.</code> | <code>The same discounts you can have been added as an additional line and do into your account. It needs be entitled to % discount off of the costs.</code> | <code>1.0</code> |
  | <code>So for example, since this is for the 2nd line bro more. So if you have any family that you want to add on your account. Yeah, we do have a same offer plan. This offer promo today.</code> | <code>I was about to ask us to confirm the email address that we have on the account or on your file. So what I can you tell me your email address.</code>   | <code>0.2</code> |
  | <code>So for example, since this is for the 2nd line bro more. So if you have any family that you want to add on your account. Yeah, we do have a same offer plan. This offer promo today.</code> | <code>Are you planning to get a new sim only plan or a new phone?</code>                                                                                     | <code>0.2</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 50
- `per_device_eval_batch_size`: 50
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 50
- `per_device_eval_batch_size`: 50
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch | Step | Validation Loss | sts_dev_spearman_max |
|:-----:|:----:|:---------------:|:--------------------:|
| 1.0   | 160  | 0.1772          | 0.2789               |


### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.2.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->