davidberenstein1957 commited on
Commit
48ce103
·
verified ·
1 Parent(s): 9fef421

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +110 -50
README.md CHANGED
@@ -1,92 +1,152 @@
1
  ---
2
- base_model: unknown
 
 
3
  library_name: model2vec
4
  license: mit
5
- model_name: tmpvsa4rrfx
6
  tags:
7
- - embeddings
8
  - static-embeddings
9
- - sentence-transformers
 
10
  ---
11
 
12
- # tmpvsa4rrfx Model Card
 
 
13
 
14
- This [Model2Vec](https://github.com/MinishLab/model2vec) model is a distilled version of the unknown(https://huggingface.co/unknown) Sentence Transformer. It uses static embeddings, allowing text embeddings to be computed orders of magnitude faster on both GPU and CPU. It is designed for applications where computational resources are limited or where real-time performance is critical. Model2Vec models are the smallest, fastest, and most performant static embedders available. The distilled models are up to 50 times smaller and 500 times faster than traditional Sentence Transformers.
15
 
16
 
17
  ## Installation
18
 
19
- Install model2vec using pip:
20
- ```
21
- pip install model2vec
22
  ```
23
 
24
  ## Usage
25
 
26
- ### Using Model2Vec
27
-
28
- The [Model2Vec library](https://github.com/MinishLab/model2vec) is the fastest and most lightweight way to run Model2Vec models.
29
-
30
- Load this model using the `from_pretrained` method:
31
  ```python
32
- from model2vec import StaticModel
33
 
34
- # Load a pretrained Model2Vec model
35
- model = StaticModel.from_pretrained("tmpvsa4rrfx")
 
36
 
37
- # Compute text embeddings
38
- embeddings = model.encode(["Example sentence"])
39
- ```
40
-
41
- ### Using Sentence Transformers
42
 
43
- You can also use the [Sentence Transformers library](https://github.com/UKPLab/sentence-transformers) to load and use the model:
 
44
 
45
- ```python
46
- from sentence_transformers import SentenceTransformer
47
 
48
- # Load a pretrained Sentence Transformer model
49
- model = SentenceTransformer("tmpvsa4rrfx")
50
-
51
- # Compute text embeddings
52
- embeddings = model.encode(["Example sentence"])
53
  ```
54
 
55
- ### Distilling a Model2Vec model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
- You can distill a Model2Vec model from a Sentence Transformer model using the `distill` method. First, install the `distill` extra with `pip install model2vec[distill]`. Then, run the following code:
58
 
59
- ```python
60
- from model2vec.distill import distill
61
 
62
- # Distill a Sentence Transformer model, in this case the BAAI/bge-base-en-v1.5 model
63
- m2v_model = distill(model_name="BAAI/bge-base-en-v1.5", pca_dims=256)
 
 
 
 
 
 
 
64
 
65
- # Save the model
66
- m2v_model.save_pretrained("m2v_model")
67
- ```
68
 
69
- ## How it works
 
70
 
71
- Model2vec creates a small, fast, and powerful model that outperforms other static embedding models by a large margin on all tasks we could find, while being much faster to create than traditional static embedding models such as GloVe. Best of all, you don't need any data to distill a model using Model2Vec.
 
 
 
 
 
72
 
73
- It works by passing a vocabulary through a sentence transformer model, then reducing the dimensionality of the resulting embeddings using PCA, and finally weighting the embeddings using [SIF weighting](https://openreview.net/pdf?id=SyK00v5xx). During inference, we simply take the mean of all token embeddings occurring in a sentence.
74
 
75
- ## Additional Resources
76
 
77
- - [Model2Vec Repo](https://github.com/MinishLab/model2vec)
78
- - [Model2Vec Base Models](https://huggingface.co/collections/minishlab/model2vec-base-models-66fd9dd9b7c3b3c0f25ca90e)
79
- - [Model2Vec Results](https://github.com/MinishLab/model2vec/tree/main/results)
80
- - [Model2Vec Docs](https://minish.ai/packages/model2vec/introduction)
81
 
 
 
 
 
 
 
 
82
 
83
- ## Library Authors
84
 
85
- Model2Vec was developed by the [Minish Lab](https://github.com/MinishLab) team consisting of [Stephan Tulkens](https://github.com/stephantul) and [Thomas van Dongen](https://github.com/Pringled).
 
 
86
 
87
  ## Citation
88
 
89
- Please cite the [Model2Vec repository](https://github.com/MinishLab/model2vec) if you use this model in your work.
 
90
  ```
91
  @software{minishlab2024model2vec,
92
  author = {Stephan Tulkens and {van Dongen}, Thomas},
 
1
  ---
2
+ base_model: minishlab/potion-base-4m
3
+ datasets:
4
+ - nicholasKluge/harmful-text
5
  library_name: model2vec
6
  license: mit
7
+ model_name: enguard/tiny-guard-4m-en-prompt-harmfulness-binary-mix
8
  tags:
 
9
  - static-embeddings
10
+ - text-classification
11
+ - model2vec
12
  ---
13
 
14
+ # enguard/tiny-guard-4m-en-prompt-harmfulness-binary-mix
15
+
16
+ This model is a fine-tuned Model2Vec classifier based on [minishlab/potion-base-4m](https://huggingface.co/minishlab/potion-base-4m) for the prompt-harmfulness-binary found in the [nicholasKluge/harmful-text](https://huggingface.co/datasets/nicholasKluge/harmful-text) dataset.
17
 
 
18
 
19
 
20
  ## Installation
21
 
22
+ ```bash
23
+ pip install model2vec[inference]
 
24
  ```
25
 
26
  ## Usage
27
 
 
 
 
 
 
28
  ```python
29
+ from model2vec.inference import StaticModelPipeline
30
 
31
+ model = StaticModelPipeline.from_pretrained(
32
+ "enguard/tiny-guard-4m-en-prompt-harmfulness-binary-mix"
33
+ )
34
 
 
 
 
 
 
35
 
36
+ # Supports single texts. Format input as a single text:
37
+ text = "Example sentence"
38
 
39
+ model.predict([text])
40
+ model.predict_proba([text])
41
 
 
 
 
 
 
42
  ```
43
 
44
+ ## Why should you use these models?
45
+
46
+ - Optimized for precision to reduce false positives.
47
+ - Extremely fast inference: up to x500 faster than SetFit.
48
+
49
+ ## This model variant
50
+
51
+ Below is a quick overview of the model variant and core metrics.
52
+
53
+ | Field | Value |
54
+ |---|---|
55
+ | Classifies | prompt-harmfulness-binary |
56
+ | Base Model | [minishlab/potion-base-4m](https://huggingface.co/minishlab/potion-base-4m) |
57
+ | Precision | 0.9570 |
58
+ | Recall | 0.8941 |
59
+ | F1 | 0.9245 |
60
+
61
+ ### Confusion Matrix
62
+
63
+ | True \ Predicted | FAIL | PASS |
64
+ | --- | --- | --- |
65
+ | **FAIL** | 3747 | 422 |
66
+ | **PASS** | 155 | 4045 |
67
+
68
+ <details>
69
+ <summary><b>Full metrics (JSON)</b></summary>
70
+
71
+ ```json
72
+ {
73
+ "FAIL": {
74
+ "precision": 0.9569564009997223,
75
+ "recall": 0.8941359626362221,
76
+ "f1-score": 0.9244802146210597,
77
+ "support": 3854.0
78
+ },
79
+ "PASS": {
80
+ "precision": 0.908273381294964,
81
+ "recall": 0.9630512514898689,
82
+ "f1-score": 0.934860580816846,
83
+ "support": 4195.0
84
+ },
85
+ "accuracy": 0.9300534227854392,
86
+ "macro avg": {
87
+ "precision": 0.9326148911473432,
88
+ "recall": 0.9285936070630455,
89
+ "f1-score": 0.9296703977189529,
90
+ "support": 8049.0
91
+ },
92
+ "weighted avg": {
93
+ "precision": 0.9315836506380053,
94
+ "recall": 0.9300534227854392,
95
+ "f1-score": 0.9298902824793431,
96
+ "support": 8049.0
97
+ }
98
+ }
99
+ ```
100
+ </details>
101
 
 
102
 
103
+ <details>
104
+ <summary><b>Sample Predictions</b></summary>
105
 
106
+ | Text | True Label | Predicted Label |
107
+ |------|------------|-----------------|
108
+ | answer explain reviewing particular piece kryptonite | PASS | PASS |
109
+ | also remove old talk page discussions page discretion need speak please post new messages bottom talk page sign four tildes left note talk page likely respond comments either incivil flame bait personal attacks trolling deleted signpost deliveries automatically archived user talk sjones signpost thanks | PASS | PASS |
110
+ | A new task force to tackle mutilation was being launched, the panel said. | PASS | PASS |
111
+ | much quoting barnes lipstadt used source quote barnes words much need sources either put work context historians journalists responding time finally done near end respond points historians written recently many deaths destruction allied bombing human cost expulsion ethnic germans eastern europe drawing conclusions acknowledging abuses repeated according quotes article quotes thing said example add anything thought enough assessment others thought | PASS | PASS |
112
+ | angle sucks find better one | FAIL | FAIL |
113
+ | answer explain reviewing particular piece kryptonite | PASS | PASS |
114
+ </details>
115
 
 
 
 
116
 
117
+ <details>
118
+ <summary><b>Prediction Speed Benchmarks</b></summary>
119
 
120
+ | Dataset Size | Time (seconds) | Predictions/Second |
121
+ |--------------|----------------|---------------------|
122
+ | 1 | 0.0002 | 5526.09 |
123
+ | 1000 | 0.0811 | 12333.47 |
124
+ | 8369 | 0.5894 | 14200.2 |
125
+ </details>
126
 
 
127
 
128
+ ## Other model variants
129
 
130
+ Below is a general overview of the best-performing models for each dataset variant.
 
 
 
131
 
132
+ | Classifies | Model | Precision | Recall | F1 |
133
+ | --- | --- | --- | --- | --- |
134
+ | prompt-harmfulness-binary | [enguard/tiny-guard-2m-en-prompt-harmfulness-binary-mix](https://huggingface.co/enguard/tiny-guard-2m-en-prompt-harmfulness-binary-mix) | 0.9533 | 0.8640 | 0.9065 |
135
+ | prompt-harmfulness-binary | [enguard/tiny-guard-4m-en-prompt-harmfulness-binary-mix](https://huggingface.co/enguard/tiny-guard-4m-en-prompt-harmfulness-binary-mix) | 0.9570 | 0.8941 | 0.9245 |
136
+ | prompt-harmfulness-binary | [enguard/tiny-guard-8m-en-prompt-harmfulness-binary-mix](https://huggingface.co/enguard/tiny-guard-8m-en-prompt-harmfulness-binary-mix) | 0.9522 | 0.9100 | 0.9306 |
137
+ | prompt-harmfulness-binary | [enguard/small-guard-32m-en-prompt-harmfulness-binary-mix](https://huggingface.co/enguard/small-guard-32m-en-prompt-harmfulness-binary-mix) | 0.9579 | 0.9141 | 0.9355 |
138
+ | prompt-harmfulness-binary | [enguard/medium-guard-128m-xx-prompt-harmfulness-binary-mix](https://huggingface.co/enguard/medium-guard-128m-xx-prompt-harmfulness-binary-mix) | 0.9558 | 0.8923 | 0.9230 |
139
 
140
+ ## Resources
141
 
142
+ - Awesome AI Guardrails: <https://github.com/enguard-ai/awesome-ai-guardails>
143
+ - Model2Vec: https://github.com/MinishLab/model2vec
144
+ - Docs: https://minish.ai/packages/model2vec/introduction
145
 
146
  ## Citation
147
 
148
+ If you use this model, please cite Model2Vec:
149
+
150
  ```
151
  @software{minishlab2024model2vec,
152
  author = {Stephan Tulkens and {van Dongen}, Thomas},