---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4997
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Inventory Expert
sentences:
- Human Resources Analyst
- Health Informatics Specialist
- Inventory Analyst
- source_sentence: Lea Preschool Teacher
sentences:
- Career Counselor
- Restaurant Chef
- Preschool Teacher
- source_sentence: Waitor
sentences:
- Optician
- Waiter
- Sales Support Associate
- source_sentence: Prod Clerk
sentences:
- Production Clerk
- Bank Teller
- Real Estate Analyst
- source_sentence: Nigh Auditor
sentences:
- Security Shift Supervisor
- Cleaner
- Night Auditor
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("engineai/entity_matching_jobs")
# Run inference
sentences = [
'Nigh Auditor',
'Night Auditor',
'Security Shift Supervisor',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 4,997 training samples
* Columns: text_a
, text_b
, and label
* Approximate statistics based on the first 1000 samples:
| | text_a | text_b | label |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------|
| type | string | string | int |
| details |
Nrs
| Nurse
| 1
|
| Nirse
| Nurse
| 1
|
| Consumer Services Agent
| Customer Service Representative
| 1
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 5,707 evaluation samples
* Columns: text_a
, text_b
, and label
* Approximate statistics based on the first 1000 samples:
| | text_a | text_b | label |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------|
| type | string | string | int |
| details | Catering Supervisor
| Food Service Supervisor
| 1
|
| Catering Supervisor
| Food Service Supervisor
| 1
|
| Cshier
| Cashier
| 1
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 200
- `learning_rate`: 4e-05
- `weight_decay`: 0.01
- `num_train_epochs`: 40
- `warmup_ratio`: 0.2
- `load_best_model_at_end`: True
#### All Hyperparameters