komleva commited on
Commit
8725b6b
·
verified ·
1 Parent(s): ffff57d

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,386 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:4997
8
+ - loss:MultipleNegativesRankingLoss
9
+ widget:
10
+ - source_sentence: Inventory Expert
11
+ sentences:
12
+ - Human Resources Analyst
13
+ - Health Informatics Specialist
14
+ - Inventory Analyst
15
+ - source_sentence: Lea Preschool Teacher
16
+ sentences:
17
+ - Career Counselor
18
+ - Restaurant Chef
19
+ - Preschool Teacher
20
+ - source_sentence: Waitor
21
+ sentences:
22
+ - Optician
23
+ - Waiter
24
+ - Sales Support Associate
25
+ - source_sentence: Prod Clerk
26
+ sentences:
27
+ - Production Clerk
28
+ - Bank Teller
29
+ - Real Estate Analyst
30
+ - source_sentence: Nigh Auditor
31
+ sentences:
32
+ - Security Shift Supervisor
33
+ - Cleaner
34
+ - Night Auditor
35
+ pipeline_tag: sentence-similarity
36
+ library_name: sentence-transformers
37
+ ---
38
+
39
+ # SentenceTransformer
40
+
41
+ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
42
+
43
+ ## Model Details
44
+
45
+ ### Model Description
46
+ - **Model Type:** Sentence Transformer
47
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
48
+ - **Maximum Sequence Length:** 512 tokens
49
+ - **Output Dimensionality:** 1024 dimensions
50
+ - **Similarity Function:** Cosine Similarity
51
+ <!-- - **Training Dataset:** Unknown -->
52
+ <!-- - **Language:** Unknown -->
53
+ <!-- - **License:** Unknown -->
54
+
55
+ ### Model Sources
56
+
57
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
58
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
59
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
60
+
61
+ ### Full Model Architecture
62
+
63
+ ```
64
+ SentenceTransformer(
65
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
66
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
67
+ (2): Normalize()
68
+ )
69
+ ```
70
+
71
+ ## Usage
72
+
73
+ ### Direct Usage (Sentence Transformers)
74
+
75
+ First install the Sentence Transformers library:
76
+
77
+ ```bash
78
+ pip install -U sentence-transformers
79
+ ```
80
+
81
+ Then you can load this model and run inference.
82
+ ```python
83
+ from sentence_transformers import SentenceTransformer
84
+
85
+ # Download from the 🤗 Hub
86
+ model = SentenceTransformer("engineai/entity_matching_jobs")
87
+ # Run inference
88
+ sentences = [
89
+ 'Nigh Auditor',
90
+ 'Night Auditor',
91
+ 'Security Shift Supervisor',
92
+ ]
93
+ embeddings = model.encode(sentences)
94
+ print(embeddings.shape)
95
+ # [3, 1024]
96
+
97
+ # Get the similarity scores for the embeddings
98
+ similarities = model.similarity(embeddings, embeddings)
99
+ print(similarities.shape)
100
+ # [3, 3]
101
+ ```
102
+
103
+ <!--
104
+ ### Direct Usage (Transformers)
105
+
106
+ <details><summary>Click to see the direct usage in Transformers</summary>
107
+
108
+ </details>
109
+ -->
110
+
111
+ <!--
112
+ ### Downstream Usage (Sentence Transformers)
113
+
114
+ You can finetune this model on your own dataset.
115
+
116
+ <details><summary>Click to expand</summary>
117
+
118
+ </details>
119
+ -->
120
+
121
+ <!--
122
+ ### Out-of-Scope Use
123
+
124
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
125
+ -->
126
+
127
+ <!--
128
+ ## Bias, Risks and Limitations
129
+
130
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
131
+ -->
132
+
133
+ <!--
134
+ ### Recommendations
135
+
136
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
137
+ -->
138
+
139
+ ## Training Details
140
+
141
+ ### Training Dataset
142
+
143
+ #### Unnamed Dataset
144
+
145
+
146
+ * Size: 4,997 training samples
147
+ * Columns: <code>text_a</code>, <code>text_b</code>, and <code>label</code>
148
+ * Approximate statistics based on the first 1000 samples:
149
+ | | text_a | text_b | label |
150
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------|
151
+ | type | string | string | int |
152
+ | details | <ul><li>min: 3 tokens</li><li>mean: 5.66 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.48 tokens</li><li>max: 12 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
153
+ * Samples:
154
+ | text_a | text_b | label |
155
+ |:-------------------------------------|:---------------------------------------------|:---------------|
156
+ | <code>Nrs</code> | <code>Nurse</code> | <code>1</code> |
157
+ | <code>Nirse</code> | <code>Nurse</code> | <code>1</code> |
158
+ | <code>Consumer Services Agent</code> | <code>Customer Service Representative</code> | <code>1</code> |
159
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
160
+ ```json
161
+ {
162
+ "scale": 20.0,
163
+ "similarity_fct": "cos_sim"
164
+ }
165
+ ```
166
+
167
+ ### Evaluation Dataset
168
+
169
+ #### Unnamed Dataset
170
+
171
+
172
+ * Size: 5,707 evaluation samples
173
+ * Columns: <code>text_a</code>, <code>text_b</code>, and <code>label</code>
174
+ * Approximate statistics based on the first 1000 samples:
175
+ | | text_a | text_b | label |
176
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------|
177
+ | type | string | string | int |
178
+ | details | <ul><li>min: 3 tokens</li><li>mean: 5.69 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.54 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
179
+ * Samples:
180
+ | text_a | text_b | label |
181
+ |:---------------------------------|:-------------------------------------|:---------------|
182
+ | <code>Catering Supervisor</code> | <code>Food Service Supervisor</code> | <code>1</code> |
183
+ | <code>Catering Supervisor</code> | <code>Food Service Supervisor</code> | <code>1</code> |
184
+ | <code>Cshier</code> | <code>Cashier</code> | <code>1</code> |
185
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
186
+ ```json
187
+ {
188
+ "scale": 20.0,
189
+ "similarity_fct": "cos_sim"
190
+ }
191
+ ```
192
+
193
+ ### Training Hyperparameters
194
+ #### Non-Default Hyperparameters
195
+
196
+ - `eval_strategy`: steps
197
+ - `per_device_train_batch_size`: 200
198
+ - `learning_rate`: 4e-05
199
+ - `weight_decay`: 0.01
200
+ - `num_train_epochs`: 40
201
+ - `warmup_ratio`: 0.2
202
+ - `load_best_model_at_end`: True
203
+
204
+ #### All Hyperparameters
205
+ <details><summary>Click to expand</summary>
206
+
207
+ - `overwrite_output_dir`: False
208
+ - `do_predict`: False
209
+ - `eval_strategy`: steps
210
+ - `prediction_loss_only`: True
211
+ - `per_device_train_batch_size`: 200
212
+ - `per_device_eval_batch_size`: 8
213
+ - `per_gpu_train_batch_size`: None
214
+ - `per_gpu_eval_batch_size`: None
215
+ - `gradient_accumulation_steps`: 1
216
+ - `eval_accumulation_steps`: None
217
+ - `torch_empty_cache_steps`: None
218
+ - `learning_rate`: 4e-05
219
+ - `weight_decay`: 0.01
220
+ - `adam_beta1`: 0.9
221
+ - `adam_beta2`: 0.999
222
+ - `adam_epsilon`: 1e-08
223
+ - `max_grad_norm`: 1.0
224
+ - `num_train_epochs`: 40
225
+ - `max_steps`: -1
226
+ - `lr_scheduler_type`: linear
227
+ - `lr_scheduler_kwargs`: {}
228
+ - `warmup_ratio`: 0.2
229
+ - `warmup_steps`: 0
230
+ - `log_level`: passive
231
+ - `log_level_replica`: warning
232
+ - `log_on_each_node`: True
233
+ - `logging_nan_inf_filter`: True
234
+ - `save_safetensors`: True
235
+ - `save_on_each_node`: False
236
+ - `save_only_model`: False
237
+ - `restore_callback_states_from_checkpoint`: False
238
+ - `no_cuda`: False
239
+ - `use_cpu`: False
240
+ - `use_mps_device`: False
241
+ - `seed`: 42
242
+ - `data_seed`: None
243
+ - `jit_mode_eval`: False
244
+ - `use_ipex`: False
245
+ - `bf16`: False
246
+ - `fp16`: False
247
+ - `fp16_opt_level`: O1
248
+ - `half_precision_backend`: auto
249
+ - `bf16_full_eval`: False
250
+ - `fp16_full_eval`: False
251
+ - `tf32`: None
252
+ - `local_rank`: 0
253
+ - `ddp_backend`: None
254
+ - `tpu_num_cores`: None
255
+ - `tpu_metrics_debug`: False
256
+ - `debug`: []
257
+ - `dataloader_drop_last`: False
258
+ - `dataloader_num_workers`: 0
259
+ - `dataloader_prefetch_factor`: None
260
+ - `past_index`: -1
261
+ - `disable_tqdm`: False
262
+ - `remove_unused_columns`: True
263
+ - `label_names`: None
264
+ - `load_best_model_at_end`: True
265
+ - `ignore_data_skip`: False
266
+ - `fsdp`: []
267
+ - `fsdp_min_num_params`: 0
268
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
269
+ - `fsdp_transformer_layer_cls_to_wrap`: None
270
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
271
+ - `deepspeed`: None
272
+ - `label_smoothing_factor`: 0.0
273
+ - `optim`: adamw_torch
274
+ - `optim_args`: None
275
+ - `adafactor`: False
276
+ - `group_by_length`: False
277
+ - `length_column_name`: length
278
+ - `ddp_find_unused_parameters`: None
279
+ - `ddp_bucket_cap_mb`: None
280
+ - `ddp_broadcast_buffers`: False
281
+ - `dataloader_pin_memory`: True
282
+ - `dataloader_persistent_workers`: False
283
+ - `skip_memory_metrics`: True
284
+ - `use_legacy_prediction_loop`: False
285
+ - `push_to_hub`: False
286
+ - `resume_from_checkpoint`: None
287
+ - `hub_model_id`: None
288
+ - `hub_strategy`: every_save
289
+ - `hub_private_repo`: None
290
+ - `hub_always_push`: False
291
+ - `gradient_checkpointing`: False
292
+ - `gradient_checkpointing_kwargs`: None
293
+ - `include_inputs_for_metrics`: False
294
+ - `include_for_metrics`: []
295
+ - `eval_do_concat_batches`: True
296
+ - `fp16_backend`: auto
297
+ - `push_to_hub_model_id`: None
298
+ - `push_to_hub_organization`: None
299
+ - `mp_parameters`:
300
+ - `auto_find_batch_size`: False
301
+ - `full_determinism`: False
302
+ - `torchdynamo`: None
303
+ - `ray_scope`: last
304
+ - `ddp_timeout`: 1800
305
+ - `torch_compile`: False
306
+ - `torch_compile_backend`: None
307
+ - `torch_compile_mode`: None
308
+ - `dispatch_batches`: None
309
+ - `split_batches`: None
310
+ - `include_tokens_per_second`: False
311
+ - `include_num_input_tokens_seen`: False
312
+ - `neftune_noise_alpha`: None
313
+ - `optim_target_modules`: None
314
+ - `batch_eval_metrics`: False
315
+ - `eval_on_start`: False
316
+ - `use_liger_kernel`: False
317
+ - `eval_use_gather_object`: False
318
+ - `average_tokens_across_devices`: False
319
+ - `prompts`: None
320
+ - `batch_sampler`: batch_sampler
321
+ - `multi_dataset_batch_sampler`: proportional
322
+
323
+ </details>
324
+
325
+ ### Training Logs
326
+ | Epoch | Step | Training Loss |
327
+ |:-----:|:----:|:-------------:|
328
+ | 20.0 | 500 | 0.0692 |
329
+ | 40.0 | 1000 | 0.0508 |
330
+
331
+
332
+ ### Framework Versions
333
+ - Python: 3.10.12
334
+ - Sentence Transformers: 3.3.1
335
+ - Transformers: 4.47.1
336
+ - PyTorch: 2.1.0+cu118
337
+ - Accelerate: 1.2.1
338
+ - Datasets: 3.2.0
339
+ - Tokenizers: 0.21.0
340
+
341
+ ## Citation
342
+
343
+ ### BibTeX
344
+
345
+ #### Sentence Transformers
346
+ ```bibtex
347
+ @inproceedings{reimers-2019-sentence-bert,
348
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
349
+ author = "Reimers, Nils and Gurevych, Iryna",
350
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
351
+ month = "11",
352
+ year = "2019",
353
+ publisher = "Association for Computational Linguistics",
354
+ url = "https://arxiv.org/abs/1908.10084",
355
+ }
356
+ ```
357
+
358
+ #### MultipleNegativesRankingLoss
359
+ ```bibtex
360
+ @misc{henderson2017efficient,
361
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
362
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
363
+ year={2017},
364
+ eprint={1705.00652},
365
+ archivePrefix={arXiv},
366
+ primaryClass={cs.CL}
367
+ }
368
+ ```
369
+
370
+ <!--
371
+ ## Glossary
372
+
373
+ *Clearly define terms in order to be accessible across audiences.*
374
+ -->
375
+
376
+ <!--
377
+ ## Model Card Authors
378
+
379
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
380
+ -->
381
+
382
+ <!--
383
+ ## Model Card Contact
384
+
385
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
386
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "large_fixed_test_jobs_100",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.42.3",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.0",
4
+ "transformers": "4.42.3",
5
+ "pytorch": "2.3.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b02a3d15356f0062fc6e3840069815074ec262915059c54b33860b63f5208964
3
+ size 2239607176
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "tokenizer_class": "XLMRobertaTokenizer",
60
+ "truncation_side": "right",
61
+ "truncation_strategy": "longest_first",
62
+ "unk_token": "<unk>"
63
+ }