emotionanalysis commited on
Commit
e04dd2d
·
verified ·
1 Parent(s): f646ab4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -17
README.md CHANGED
@@ -9,25 +9,26 @@ paust/pko-t5-base model based
9
 
10
  Since this model is based on paust/pko-t5-base tokenizer, you need to import it.
11
 
12
- from transformers import T5TokenizerFast, T5ForConditionalGeneration
13
  tokenizer = T5TokenizerFast.from_pretrained("paust/pko-t5-base")
14
- model = T5ForConditionalGeneration.from_pretrained(emotionanalysis/diaryempathizer-t5-ko)
15
 
 
16
 
17
- import torch
18
- from transformers import T5TokenizerFast, T5ForConditionalGeneration
19
 
20
- model = T5ForConditionalGeneration.from_pretrained(emotionanalysis/diaryempathizer-t5-ko)
21
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
22
- model.to(device)
23
-
24
- tokenizer = T5TokenizerFast.from_pretrained("paust/pko-t5-base")
25
- input_text = """
26
- """
27
-
28
- inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True, padding="max_length")
29
- inputs = {key: value.to(device) for key, value in inputs.items()}
30
- outputs = model.generate(input_ids=inputs["input_ids"], max_length=128, num_beams=4, early_stopping=True)
31
 
32
- generated_comment = tokenizer.decode(outputs[0], skip_special_tokens=True)
33
- print(generated_comment)
 
 
 
 
 
9
 
10
  Since this model is based on paust/pko-t5-base tokenizer, you need to import it.
11
 
12
+ ```from transformers import T5TokenizerFast, T5ForConditionalGeneration
13
  tokenizer = T5TokenizerFast.from_pretrained("paust/pko-t5-base")
14
+ model = T5ForConditionalGeneration.from_pretrained(emotionanalysis/diaryempathizer-t5-ko)```
15
 
16
+ Test code
17
 
18
+ ```import torch
19
+ from transformers import T5TokenizerFast, T5ForConditionalGeneration
20
 
21
+ model = T5ForConditionalGeneration.from_pretrained(emotionanalysis/diaryempathizer-t5-ko)
22
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
23
+ model.to(device)
24
+
25
+ tokenizer = T5TokenizerFast.from_pretrained("paust/pko-t5-base")
26
+ input_text = """
27
+ """
 
 
 
 
28
 
29
+ inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True, padding="max_length")
30
+ inputs = {key: value.to(device) for key, value in inputs.items()}
31
+ outputs = model.generate(input_ids=inputs["input_ids"], max_length=128, num_beams=4, early_stopping=True)
32
+
33
+ generated_comment = tokenizer.decode(outputs[0], skip_special_tokens=True)
34
+ print(generated_comment)```