Delete benchmark.py
Browse files- benchmark.py +0 -292
benchmark.py
DELETED
|
@@ -1,292 +0,0 @@
|
|
| 1 |
-
import json
|
| 2 |
-
import onnxruntime as rt
|
| 3 |
-
import transformers
|
| 4 |
-
from qdrant_client import QdrantClient, models
|
| 5 |
-
import queue
|
| 6 |
-
from threading import Thread, Lock
|
| 7 |
-
import time
|
| 8 |
-
from pyatomix import AtomicInt
|
| 9 |
-
|
| 10 |
-
# adjust these settings as needed
|
| 11 |
-
TOKENIZER_PATH = "."
|
| 12 |
-
ORIG_MODEL_PATH = "model_uint8.onnx"
|
| 13 |
-
ORIG_DATATYPE = models.Datatype.FLOAT32
|
| 14 |
-
ORIG_COLLECTION_NAME = "baseline"
|
| 15 |
-
COMPARE_MODEL_PATH = "snowflake2_m_uint8.onnx"
|
| 16 |
-
COMPARE_DATATYPE = models.Datatype.UINT8
|
| 17 |
-
COMPARE_COLLECTION_NAME = "compare"
|
| 18 |
-
EMBEDDING_DIM = 768 # size of the model output
|
| 19 |
-
STAT_RANGES = [
|
| 20 |
-
10,
|
| 21 |
-
20,
|
| 22 |
-
50,
|
| 23 |
-
] # stats will be calculated for each range: top 10, top 20, etc.
|
| 24 |
-
STATS = {}
|
| 25 |
-
STAT_LOCK = Lock()
|
| 26 |
-
BATCH_SIZE = 1000 # this many token/id pairs will be processed at a time
|
| 27 |
-
THREADS = 8 # number of threads to use
|
| 28 |
-
# Qdrant client settings here
|
| 29 |
-
CLIENT_URL = "http://127.0.0.1"
|
| 30 |
-
CLIENT_PORT = 6333
|
| 31 |
-
CLIENT_GRPC_PORT = 6334
|
| 32 |
-
CLIENT_USE_GRPC = True
|
| 33 |
-
FINISHED = AtomicInt(0)
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
def collect_tokens() -> list[str] | None:
|
| 37 |
-
print("Attempting to grab tokens from tokenizer...")
|
| 38 |
-
with open(f"{TOKENIZER_PATH}/tokenizer.json", "r") as f:
|
| 39 |
-
t = f.read()
|
| 40 |
-
j = json.loads(t)
|
| 41 |
-
v = j["model"]["vocab"]
|
| 42 |
-
toks = [x[0] for x in v]
|
| 43 |
-
print(f"Found {len(toks)} tokens.")
|
| 44 |
-
return toks
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
def init_worker(q: queue.Queue, model_path: str, collection_name: str):
|
| 48 |
-
try:
|
| 49 |
-
session = rt.InferenceSession(model_path, providers=["CPUExecutionProvider"])
|
| 50 |
-
except Exception as e:
|
| 51 |
-
print(f"Error loading ONNX model: {e}")
|
| 52 |
-
return
|
| 53 |
-
tokenizer = transformers.AutoTokenizer.from_pretrained(TOKENIZER_PATH)
|
| 54 |
-
client = QdrantClient(
|
| 55 |
-
url=CLIENT_URL,
|
| 56 |
-
port=CLIENT_PORT,
|
| 57 |
-
grpc_port=CLIENT_GRPC_PORT,
|
| 58 |
-
prefer_grpc=CLIENT_USE_GRPC,
|
| 59 |
-
)
|
| 60 |
-
global FINISHED
|
| 61 |
-
while True:
|
| 62 |
-
try:
|
| 63 |
-
chunk = q.get(False)
|
| 64 |
-
except queue.Empty:
|
| 65 |
-
return
|
| 66 |
-
batch = []
|
| 67 |
-
for c in chunk:
|
| 68 |
-
FINISHED += 1
|
| 69 |
-
# c[0] == id, c[1] == token, we want id to always be associated with the same token across models
|
| 70 |
-
enc = tokenizer(c[1]) # this could've been batched...
|
| 71 |
-
embeddings = session.run(
|
| 72 |
-
None,
|
| 73 |
-
{
|
| 74 |
-
"input_ids": [enc.input_ids],
|
| 75 |
-
"attention_mask": [enc.attention_mask],
|
| 76 |
-
},
|
| 77 |
-
)
|
| 78 |
-
batch.append( # [1][0] == sentence_embedding
|
| 79 |
-
models.PointStruct(id=c[0], vector={"dense": embeddings[1][0]})
|
| 80 |
-
)
|
| 81 |
-
client.batch_update_points(
|
| 82 |
-
collection_name=collection_name,
|
| 83 |
-
update_operations=[models.UpsertOperation(upsert=models.PointsList(points=batch))],
|
| 84 |
-
wait=False,
|
| 85 |
-
)
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
def init_collection(collection_name: str, model_path: str, datatype: models.Datatype) -> bool:
|
| 89 |
-
client = QdrantClient(
|
| 90 |
-
url=CLIENT_URL,
|
| 91 |
-
port=CLIENT_PORT,
|
| 92 |
-
grpc_port=CLIENT_GRPC_PORT,
|
| 93 |
-
prefer_grpc=CLIENT_USE_GRPC,
|
| 94 |
-
)
|
| 95 |
-
if client.collection_exists(collection_name):
|
| 96 |
-
info = client.get_collection(collection_name)
|
| 97 |
-
print(f"Collection '{collection_name}' already exists, skipping init.")
|
| 98 |
-
print(f"{info.points_count} points in collection.")
|
| 99 |
-
return True
|
| 100 |
-
res = client.create_collection(
|
| 101 |
-
collection_name=collection_name,
|
| 102 |
-
vectors_config={
|
| 103 |
-
"dense": models.VectorParams(
|
| 104 |
-
size=EMBEDDING_DIM,
|
| 105 |
-
distance=models.Distance.COSINE,
|
| 106 |
-
on_disk=False,
|
| 107 |
-
datatype=datatype,
|
| 108 |
-
),
|
| 109 |
-
},
|
| 110 |
-
hnsw_config=models.HnswConfigDiff(m=0), # no index
|
| 111 |
-
on_disk_payload=False,
|
| 112 |
-
)
|
| 113 |
-
if not res:
|
| 114 |
-
print(f"Error creating collection.")
|
| 115 |
-
return False
|
| 116 |
-
else:
|
| 117 |
-
print("Collection created.")
|
| 118 |
-
toks = collect_tokens()
|
| 119 |
-
FINISHED.store(0)
|
| 120 |
-
if toks:
|
| 121 |
-
ids = [x for x in range(len(toks))]
|
| 122 |
-
# align Qdrant IDs with the token for later analysis
|
| 123 |
-
pairs = list(zip(ids, toks))
|
| 124 |
-
# lists of (Qdrant ID, token)
|
| 125 |
-
chunks = [pairs[i : i + BATCH_SIZE] for i in range(0, len(pairs), BATCH_SIZE)]
|
| 126 |
-
q = queue.Queue()
|
| 127 |
-
for c in chunks:
|
| 128 |
-
q.put(c)
|
| 129 |
-
for _ in range(THREADS):
|
| 130 |
-
t = Thread(target=init_worker, args=[q, model_path, collection_name])
|
| 131 |
-
t.start()
|
| 132 |
-
count = 0
|
| 133 |
-
while FINISHED.load() < len(toks):
|
| 134 |
-
time.sleep(0.5)
|
| 135 |
-
count += 1
|
| 136 |
-
if count == 20: # update every 10 seconds or so
|
| 137 |
-
print(f"approximately {q.qsize() * BATCH_SIZE} items left in queue...")
|
| 138 |
-
count = 0
|
| 139 |
-
print(f"Done with collection init, {len(toks)} tokens upserted.")
|
| 140 |
-
# enable indexing
|
| 141 |
-
client.update_collection(collection_name=collection_name, hnsw_config=models.HnswConfigDiff(m=16))
|
| 142 |
-
return True
|
| 143 |
-
else:
|
| 144 |
-
print("Failed to grab tokens from tokenizer.")
|
| 145 |
-
return False
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
def count_mismatches(list1, list2) -> int:
|
| 149 |
-
count = 0
|
| 150 |
-
assert len(list1) == len(list2)
|
| 151 |
-
for i in range(len(list1)):
|
| 152 |
-
if list1[i] != list2[i]:
|
| 153 |
-
count += 1
|
| 154 |
-
return count
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
def score_results(
|
| 158 |
-
list1: list,
|
| 159 |
-
list2: list,
|
| 160 |
-
):
|
| 161 |
-
assert len(list1) == len(list2)
|
| 162 |
-
global STATS
|
| 163 |
-
for x in STAT_RANGES:
|
| 164 |
-
with STAT_LOCK:
|
| 165 |
-
# STATS = { range, {"exact": AtomicInt, ... }}
|
| 166 |
-
d = STATS.get(x)
|
| 167 |
-
if d is None:
|
| 168 |
-
d = {
|
| 169 |
-
"exact": AtomicInt(0),
|
| 170 |
-
"off_by_1": AtomicInt(0),
|
| 171 |
-
"off_by_2": AtomicInt(0),
|
| 172 |
-
"off_by_3": AtomicInt(0),
|
| 173 |
-
"off_by_4": AtomicInt(0),
|
| 174 |
-
"off_by_5": AtomicInt(0),
|
| 175 |
-
"missing": AtomicInt(0),
|
| 176 |
-
}
|
| 177 |
-
STATS[x] = d
|
| 178 |
-
for i in range(x):
|
| 179 |
-
if list1[i] == list2[i]:
|
| 180 |
-
d["exact"] += 1
|
| 181 |
-
else:
|
| 182 |
-
if list1[i] in list2:
|
| 183 |
-
i2 = list2.index(list1[i])
|
| 184 |
-
val = abs(i2 - i)
|
| 185 |
-
if val == 1:
|
| 186 |
-
d["off_by_1"] += 1
|
| 187 |
-
elif val == 2:
|
| 188 |
-
d["off_by_2"] += 1
|
| 189 |
-
elif val == 3:
|
| 190 |
-
d["off_by_3"] += 1
|
| 191 |
-
elif val == 4:
|
| 192 |
-
d["off_by_4"] += 1
|
| 193 |
-
else:
|
| 194 |
-
d["off_by_5"] += 1
|
| 195 |
-
else:
|
| 196 |
-
d["missing"] += 1
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
def main_worker(q: queue.Queue, limit: int):
|
| 200 |
-
global FINISHED
|
| 201 |
-
tokenizer = transformers.AutoTokenizer.from_pretrained(TOKENIZER_PATH)
|
| 202 |
-
orig_session = rt.InferenceSession(ORIG_MODEL_PATH, providers=["CPUExecutionProvider"])
|
| 203 |
-
compare_session = rt.InferenceSession(COMPARE_MODEL_PATH, providers=["CPUExecutionProvider"])
|
| 204 |
-
client = QdrantClient(
|
| 205 |
-
url=CLIENT_URL,
|
| 206 |
-
port=CLIENT_PORT,
|
| 207 |
-
grpc_port=CLIENT_GRPC_PORT,
|
| 208 |
-
prefer_grpc=CLIENT_USE_GRPC,
|
| 209 |
-
)
|
| 210 |
-
while True:
|
| 211 |
-
try:
|
| 212 |
-
chunk = q.get(False)
|
| 213 |
-
except queue.Empty:
|
| 214 |
-
return
|
| 215 |
-
# c[0] == id, c[1] == token, we want id to always be associated with the same token across models
|
| 216 |
-
for c in chunk:
|
| 217 |
-
enc = tokenizer(c)
|
| 218 |
-
oe = orig_session.run(
|
| 219 |
-
None,
|
| 220 |
-
{"input_ids": [enc.input_ids], "attention_mask": [enc.attention_mask]},
|
| 221 |
-
)
|
| 222 |
-
ce = compare_session.run(
|
| 223 |
-
None,
|
| 224 |
-
{"input_ids": [enc.input_ids], "attention_mask": [enc.attention_mask]},
|
| 225 |
-
)
|
| 226 |
-
oresult = client.query_points(
|
| 227 |
-
collection_name=ORIG_COLLECTION_NAME,
|
| 228 |
-
using="dense",
|
| 229 |
-
query=oe[1][0],
|
| 230 |
-
limit=limit + 5, # for our scoring metric we want to look slightly past the end
|
| 231 |
-
)
|
| 232 |
-
cresult = client.query_points(
|
| 233 |
-
collection_name=COMPARE_COLLECTION_NAME,
|
| 234 |
-
using="dense",
|
| 235 |
-
query=ce[1][0],
|
| 236 |
-
limit=limit + 5,
|
| 237 |
-
)
|
| 238 |
-
oids = [p.id for p in oresult.points]
|
| 239 |
-
cids = [p.id for p in cresult.points]
|
| 240 |
-
score_results(
|
| 241 |
-
oids,
|
| 242 |
-
cids,
|
| 243 |
-
)
|
| 244 |
-
FINISHED += 1
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
def main():
|
| 248 |
-
if not init_collection(ORIG_COLLECTION_NAME, ORIG_MODEL_PATH, ORIG_DATATYPE):
|
| 249 |
-
print("Failed to initialize original model values, exiting.")
|
| 250 |
-
return
|
| 251 |
-
if not init_collection(COMPARE_COLLECTION_NAME, COMPARE_MODEL_PATH, COMPARE_DATATYPE):
|
| 252 |
-
print("Failed to initialize secondary model values, exiting.")
|
| 253 |
-
return
|
| 254 |
-
toks = collect_tokens()
|
| 255 |
-
limit = 0
|
| 256 |
-
for x in STAT_RANGES:
|
| 257 |
-
if x > limit:
|
| 258 |
-
limit = x
|
| 259 |
-
FINISHED.store(0)
|
| 260 |
-
if toks:
|
| 261 |
-
chunks = [toks[i : i + BATCH_SIZE] for i in range(0, len(toks), BATCH_SIZE)]
|
| 262 |
-
q = queue.Queue()
|
| 263 |
-
for c in chunks:
|
| 264 |
-
q.put(c)
|
| 265 |
-
print("Starting analysis.")
|
| 266 |
-
for _ in range(THREADS):
|
| 267 |
-
t = Thread(
|
| 268 |
-
target=main_worker,
|
| 269 |
-
args=[q, limit],
|
| 270 |
-
)
|
| 271 |
-
t.start()
|
| 272 |
-
count = 0
|
| 273 |
-
while FINISHED.load() < len(toks):
|
| 274 |
-
time.sleep(0.5)
|
| 275 |
-
count += 1
|
| 276 |
-
if count == 20: # update every 10 seconds or so
|
| 277 |
-
print(f"approximately {q.qsize() * BATCH_SIZE} items left in queue...")
|
| 278 |
-
count = 0
|
| 279 |
-
print(f"Done with analysis.")
|
| 280 |
-
with STAT_LOCK:
|
| 281 |
-
for k, v in STATS.items():
|
| 282 |
-
print(f"Stats for top {k} query results across entire token range:")
|
| 283 |
-
print(f"exact : {(float(v["exact"].load()) / (len(toks) * k)) * 100:.2f}%")
|
| 284 |
-
print(f"off by 1 : {(float(v["off_by_1"].load()) / (len(toks) * k)) * 100:.2f}%")
|
| 285 |
-
print(f"off by 2 : {(float(v["off_by_2"].load()) / (len(toks) * k)) * 100:.2f}%")
|
| 286 |
-
print(f"off by 3 : {(float(v["off_by_3"].load()) / (len(toks) * k)) * 100:.2f}%")
|
| 287 |
-
print(f"off by 4 : {(float(v["off_by_4"].load()) / (len(toks) * k)) * 100:.2f}%")
|
| 288 |
-
print(f"off by 5+: {(float(v["off_by_5"].load()) / (len(toks) * k)) * 100:.2f}%")
|
| 289 |
-
print(f"missing : {(float(v["missing"].load()) / (len(toks) * k)) * 100:.2f}%\n")
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|