Ege Oezsoy
commited on
Commit
·
1c42c71
1
Parent(s):
74033b8
Adjustments
Browse files- endovit_demo.py +21 -8
- endovit_online.py +43 -0
- requirements.txt +2 -1
endovit_demo.py
CHANGED
|
@@ -5,8 +5,9 @@ from pathlib import Path
|
|
| 5 |
from timm.models.vision_transformer import VisionTransformer
|
| 6 |
from functools import partial
|
| 7 |
from torch import nn
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
# requires: pytorch 2.0.1, timm 0.9.16
|
| 10 |
def process_single_image(image_path, input_size=224, dataset_mean=[0.3464, 0.2280, 0.2228], dataset_std=[0.2520, 0.2128, 0.2093]):
|
| 11 |
# Define the transformations
|
| 12 |
transform = T.Compose([
|
|
@@ -22,18 +23,30 @@ def process_single_image(image_path, input_size=224, dataset_mean=[0.3464, 0.228
|
|
| 22 |
processed_image = transform(image)
|
| 23 |
|
| 24 |
return processed_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
|
|
|
| 26 |
|
| 27 |
-
|
|
|
|
| 28 |
images = torch.stack([process_single_image(image_path) for image_path in image_paths])
|
| 29 |
|
| 30 |
device = "cuda"
|
| 31 |
dtype = torch.float16
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
model = VisionTransformer(patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)).to(device, dtype).eval()
|
| 36 |
-
loading = model.load_state_dict(model_weights, strict=False)
|
| 37 |
-
print(loading)
|
| 38 |
output = model.forward_features(images.to(device, dtype))
|
| 39 |
print(output.shape)
|
|
|
|
| 5 |
from timm.models.vision_transformer import VisionTransformer
|
| 6 |
from functools import partial
|
| 7 |
from torch import nn
|
| 8 |
+
from huggingface_hub import snapshot_download
|
| 9 |
+
|
| 10 |
|
|
|
|
| 11 |
def process_single_image(image_path, input_size=224, dataset_mean=[0.3464, 0.2280, 0.2228], dataset_std=[0.2520, 0.2128, 0.2093]):
|
| 12 |
# Define the transformations
|
| 13 |
transform = T.Compose([
|
|
|
|
| 23 |
processed_image = transform(image)
|
| 24 |
|
| 25 |
return processed_image
|
| 26 |
+
def load_model_from_huggingface(repo_id, model_filename):
|
| 27 |
+
# Download model files
|
| 28 |
+
model_path = snapshot_download(repo_id=repo_id, revision="main")
|
| 29 |
+
model_weights_path = Path(model_path) / model_filename
|
| 30 |
+
|
| 31 |
+
# Load model weights
|
| 32 |
+
model_weights = torch.load(model_weights_path)['model']
|
| 33 |
+
|
| 34 |
+
# Define the model (ensure this matches your model's architecture)
|
| 35 |
+
model = VisionTransformer(patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)).eval()
|
| 36 |
+
|
| 37 |
+
# Load the weights into the model
|
| 38 |
+
loading = model.load_state_dict(model_weights, strict=False)
|
| 39 |
|
| 40 |
+
return model, loading
|
| 41 |
|
| 42 |
+
|
| 43 |
+
image_paths = sorted(Path('demo_images').glob('*.png')) # TODO replace with image pass
|
| 44 |
images = torch.stack([process_single_image(image_path) for image_path in image_paths])
|
| 45 |
|
| 46 |
device = "cuda"
|
| 47 |
dtype = torch.float16
|
| 48 |
+
model, loading_info = load_model_from_huggingface("egeozsoy/EndoViT", "endovit.pth")
|
| 49 |
+
model = model.to(device, dtype)
|
| 50 |
+
print(loading_info)
|
|
|
|
|
|
|
|
|
|
| 51 |
output = model.forward_features(images.to(device, dtype))
|
| 52 |
print(output.shape)
|
endovit_online.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
from timm.models.vision_transformer import VisionTransformer
|
| 4 |
+
from functools import partial
|
| 5 |
+
from torch import nn
|
| 6 |
+
from huggingface_hub import snapshot_download
|
| 7 |
+
|
| 8 |
+
def load_model_from_huggingface(repo_id, model_filename):
|
| 9 |
+
# Download model files
|
| 10 |
+
model_path = snapshot_download(repo_id=repo_id, revision="main")
|
| 11 |
+
model_weights_path = Path(model_path) / model_filename
|
| 12 |
+
|
| 13 |
+
# Load model weights
|
| 14 |
+
model_weights = torch.load(model_weights_path)['model']
|
| 15 |
+
|
| 16 |
+
# Define the model (ensure this matches your model's architecture)
|
| 17 |
+
model = VisionTransformer(patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)).eval()
|
| 18 |
+
|
| 19 |
+
# Load the weights into the model
|
| 20 |
+
loading = model.load_state_dict(model_weights, strict=False)
|
| 21 |
+
|
| 22 |
+
return model, loading
|
| 23 |
+
def process_single_image(image_path, input_size=224, dataset_mean=[0.3464, 0.2280, 0.2228], dataset_std=[0.2520, 0.2128, 0.2093]):
|
| 24 |
+
# Define the transformations
|
| 25 |
+
transform = T.Compose([
|
| 26 |
+
T.Resize((input_size, input_size)),
|
| 27 |
+
T.ToTensor(),
|
| 28 |
+
T.Normalize(mean=dataset_mean, std=dataset_std)
|
| 29 |
+
])
|
| 30 |
+
|
| 31 |
+
# Open the image
|
| 32 |
+
image = Image.open(image_path).convert('RGB')
|
| 33 |
+
|
| 34 |
+
# Apply the transformations
|
| 35 |
+
processed_image = transform(image)
|
| 36 |
+
|
| 37 |
+
return processed_image
|
| 38 |
+
|
| 39 |
+
device = "cuda"
|
| 40 |
+
dtype = torch.float16
|
| 41 |
+
model, loading_info = load_model_from_huggingface("egeozsoy/EndoViT", "endovit.pth")
|
| 42 |
+
model = model.to(device, dtype)
|
| 43 |
+
print(loading_info)
|
requirements.txt
CHANGED
|
@@ -1,2 +1,3 @@
|
|
| 1 |
torch==2.0.1
|
| 2 |
-
timm==0.9.16
|
|
|
|
|
|
| 1 |
torch==2.0.1
|
| 2 |
+
timm==0.9.16
|
| 3 |
+
huggingface-hub==0.22.2
|