Update README.md
Browse files
README.md
CHANGED
@@ -15,40 +15,77 @@ model-index:
|
|
15 |
- task:
|
16 |
type: token-classification
|
17 |
dataset:
|
18 |
-
type:
|
19 |
-
name: LeNER
|
20 |
-
config: LeNER-Br
|
21 |
split: test
|
22 |
metrics:
|
23 |
- type: seqeval
|
24 |
-
value:
|
25 |
-
name:
|
26 |
args:
|
27 |
scheme: IOB2
|
28 |
- task:
|
29 |
type: token-classification
|
30 |
dataset:
|
31 |
-
type: eduagarcia/
|
32 |
name: UlyNER-PL Coarse
|
33 |
config: UlyssesNER-Br-PL-coarse
|
34 |
split: test
|
35 |
metrics:
|
36 |
- type: seqeval
|
37 |
-
value:
|
38 |
-
name:
|
39 |
args:
|
40 |
scheme: IOB2
|
41 |
- task:
|
42 |
type: token-classification
|
43 |
dataset:
|
44 |
-
type: eduagarcia/
|
45 |
name: UlyNER-PL Fine
|
46 |
config: UlyssesNER-Br-PL-fine
|
47 |
split: test
|
48 |
metrics:
|
49 |
- type: seqeval
|
50 |
-
value:
|
51 |
-
name:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
args:
|
53 |
scheme: IOB2
|
54 |
license: cc-by-4.0
|
@@ -57,7 +94,7 @@ metrics:
|
|
57 |
---
|
58 |
# RoBERTaLexPT-base
|
59 |
|
60 |
-
RoBERTaLexPT-base is a Portuguese Masked Language Model pretrained from scratch from the [LegalPT](https://huggingface.co/datasets/eduagarcia/
|
61 |
|
62 |
- **Language(s) (NLP):** Brazilian Portuguese (pt-BR)
|
63 |
- **License:** [Creative Commons Attribution 4.0 International Public License](https://creativecommons.org/licenses/by/4.0/deed.en)
|
@@ -66,7 +103,7 @@ RoBERTaLexPT-base is a Portuguese Masked Language Model pretrained from scratch
|
|
66 |
|
67 |
## Evaluation
|
68 |
|
69 |
-
The model was evaluated on ["PortuLex" benchmark](eduagarcia/
|
70 |
|
71 |
Macro F1-Score (\%) for multiple models evaluated on PortuLex benchmark test splits:
|
72 |
|
@@ -87,16 +124,16 @@ Macro F1-Score (\%) for multiple models evaluated on PortuLex benchmark test spl
|
|
87 |
| RoBERTaTimbau-base (Reproduction of BERTimbau) | 89.68 | 87.53/85.74 | 78.82 | 82.03 | 84.29 |
|
88 |
| RoBERTaLegalPT-base (Trained on LegalPT) | 90.59 | 85.45/84.40 | 79.92 | 82.84 | 84.57 |
|
89 |
| RoBERTaCrawlPT-base (Trained on CrawlPT) | 89.24 | 88.22/86.58 | 79.88 | 82.80 | 84.83 |
|
90 |
-
| RoBERTaLexPT-base (
|
91 |
|
92 |
In summary, RoBERTaLexPT consistently achieves top legal NLP effectiveness despite its base size.
|
93 |
-
With sufficient pre-training data, it can surpass
|
94 |
|
95 |
## Training Details
|
96 |
|
97 |
RoBERTaLexPT-base is pretrained from both data:
|
98 |
-
- [LegalPT](https://huggingface.co/datasets/eduagarcia/
|
99 |
-
- CrawlPT is a
|
100 |
|
101 |
### Training Procedure
|
102 |
|
|
|
15 |
- task:
|
16 |
type: token-classification
|
17 |
dataset:
|
18 |
+
type: lener_br
|
19 |
+
name: LeNER-Br
|
|
|
20 |
split: test
|
21 |
metrics:
|
22 |
- type: seqeval
|
23 |
+
value: 0.9073
|
24 |
+
name: F1
|
25 |
args:
|
26 |
scheme: IOB2
|
27 |
- task:
|
28 |
type: token-classification
|
29 |
dataset:
|
30 |
+
type: eduagarcia/PortuLex_benchmark
|
31 |
name: UlyNER-PL Coarse
|
32 |
config: UlyssesNER-Br-PL-coarse
|
33 |
split: test
|
34 |
metrics:
|
35 |
- type: seqeval
|
36 |
+
value: 0.8856
|
37 |
+
name: F1
|
38 |
args:
|
39 |
scheme: IOB2
|
40 |
- task:
|
41 |
type: token-classification
|
42 |
dataset:
|
43 |
+
type: eduagarcia/PortuLex_benchmark
|
44 |
name: UlyNER-PL Fine
|
45 |
config: UlyssesNER-Br-PL-fine
|
46 |
split: test
|
47 |
metrics:
|
48 |
- type: seqeval
|
49 |
+
value: 0.8603
|
50 |
+
name: F1
|
51 |
+
args:
|
52 |
+
scheme: IOB2
|
53 |
+
- task:
|
54 |
+
type: token-classification
|
55 |
+
dataset:
|
56 |
+
type: eduagarcia/PortuLex_benchmark
|
57 |
+
name: FGV-STF
|
58 |
+
config: fgv-coarse
|
59 |
+
split: test
|
60 |
+
metrics:
|
61 |
+
- type: seqeval
|
62 |
+
value: 0.8040
|
63 |
+
name: F1
|
64 |
+
args:
|
65 |
+
scheme: IOB2
|
66 |
+
- task:
|
67 |
+
type: token-classification
|
68 |
+
dataset:
|
69 |
+
type: eduagarcia/PortuLex_benchmark
|
70 |
+
name: RRIP
|
71 |
+
config: rrip
|
72 |
+
split: test
|
73 |
+
metrics:
|
74 |
+
- type: seqeval
|
75 |
+
value: 0.8322
|
76 |
+
name: F1
|
77 |
+
args:
|
78 |
+
scheme: IOB2
|
79 |
+
- task:
|
80 |
+
type: token-classification
|
81 |
+
dataset:
|
82 |
+
type: eduagarcia/PortuLex_benchmark
|
83 |
+
name: PortuLex
|
84 |
+
split: test
|
85 |
+
metrics:
|
86 |
+
- type: seqeval
|
87 |
+
value: 0.8541
|
88 |
+
name: Average F1
|
89 |
args:
|
90 |
scheme: IOB2
|
91 |
license: cc-by-4.0
|
|
|
94 |
---
|
95 |
# RoBERTaLexPT-base
|
96 |
|
97 |
+
RoBERTaLexPT-base is a Portuguese Masked Language Model pretrained from scratch from the [LegalPT](https://huggingface.co/datasets/eduagarcia/LegalPT_dedup) and [CrawlPT](https://huggingface.co/datasets/eduagarcia/CrawlPT_dedup) corpora, using the same architecture as [RoBERTa-base](https://huggingface.co/FacebookAI/roberta-base), introduced by [Liu et al. (2019)](https://arxiv.org/abs/1907.11692).
|
98 |
|
99 |
- **Language(s) (NLP):** Brazilian Portuguese (pt-BR)
|
100 |
- **License:** [Creative Commons Attribution 4.0 International Public License](https://creativecommons.org/licenses/by/4.0/deed.en)
|
|
|
103 |
|
104 |
## Evaluation
|
105 |
|
106 |
+
The model was evaluated on ["PortuLex" benchmark](eduagarcia/PortuLex_benchmark), a four-task benchmark designed to evaluate the quality and performance of language models in the Portuguese legal domain.
|
107 |
|
108 |
Macro F1-Score (\%) for multiple models evaluated on PortuLex benchmark test splits:
|
109 |
|
|
|
124 |
| RoBERTaTimbau-base (Reproduction of BERTimbau) | 89.68 | 87.53/85.74 | 78.82 | 82.03 | 84.29 |
|
125 |
| RoBERTaLegalPT-base (Trained on LegalPT) | 90.59 | 85.45/84.40 | 79.92 | 82.84 | 84.57 |
|
126 |
| RoBERTaCrawlPT-base (Trained on CrawlPT) | 89.24 | 88.22/86.58 | 79.88 | 82.80 | 84.83 |
|
127 |
+
| **RoBERTaLexPT-base** (Trained on CrawlPT + LegalPT) | **90.73** | **88.56**/86.03 | **80.40** | 83.22 | **85.41** |
|
128 |
|
129 |
In summary, RoBERTaLexPT consistently achieves top legal NLP effectiveness despite its base size.
|
130 |
+
With sufficient pre-training data, it can surpass larger models. The results highlight the importance of domain-diverse training data over sheer model scale.
|
131 |
|
132 |
## Training Details
|
133 |
|
134 |
RoBERTaLexPT-base is pretrained from both data:
|
135 |
+
- [LegalPT](https://huggingface.co/datasets/eduagarcia/LegalPT_dedup) is a Portuguese legal corpus by aggregating diverse sources of up to 125GiB data.
|
136 |
+
- [CrawlPT](https://huggingface.co/datasets/eduagarcia/CrawlPT_dedup) is a composition of three Portuguese general corpora: [brWaC](https://huggingface.co/datasets/eduagarcia/brwac_dedup), [CC100-PT](https://huggingface.co/datasets/eduagarcia/cc100-pt), [OSCAR-2301](https://huggingface.co/datasets/eduagarcia/OSCAR-2301-pt_dedup).
|
137 |
|
138 |
### Training Procedure
|
139 |
|