Upload PPO LunarLander-v2 trained agent for the first time
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 267.03 +/- 15.80
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e002a3b1f30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e002a3b1fc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e002a3b2050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e002a3b20e0>", "_build": "<function ActorCriticPolicy._build at 0x7e002a3b2170>", "forward": "<function ActorCriticPolicy.forward at 0x7e002a3b2200>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e002a3b2290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e002a3b2320>", "_predict": "<function ActorCriticPolicy._predict at 0x7e002a3b23b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e002a3b2440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e002a3b24d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e002a3b2560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e002a353280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710081329891863436, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMY8H75DqT8/lVwgvf0R+L4lBom+es13PQAAAAAAAAAAejc0PnZMc7zwD2E6wjV8uEbJ073uto25AACAPwAAgD9NMaC9iLULP9fZE72RVtq+VaZ7vUBCFL0AAAAAAAAAAGbXSb5IOIQ+Yj8OPlLFo7472TQ8Yy03PQAAAAAAAAAAE7UbvgNyBbzKnh67l4NfucXfaT2cPDo6AACAPwAAgD9N5809dssjPe10X75VAQm+9PrGvU4oo7sAAAAAAAAAAENDqz4vRTs/Op9Quyplyr7N+Ko+anI0vgAAAAAAAAAAzaAAvD1qKbvwevg7NGWPPL2yRjyLW3e9AACAPwAAgD/Tvg6+pDMbP6kuP70hG+++Vh8Yvh3iIjwAAAAAAAAAALN3Kz1Im4M9YBmdvf4xIL4PUmi9Rnw8PAAAAAAAAAAAmqVVPKDe1D6Hujs8DwTcvnz7YLyVIcg7AAAAAAAAAAAACDE8Cusuu/L3xzoEmqM86LmjPNUUjL0AAIA/AACAPw25s72k5X+7C1dhPRMurzzHsso8TfyTvQAAgD8AAIA/UyuWPvauej+4sYk99li2vm3QXD4Vz+C9AAAAAAAAAABNw7c9XK98OUI2hzqXaEg1tF3zOk54obkAAIA/AAAAAGaLtj2uQ4W6q9h4Og3hGjV3OBK7ik2QuQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCeIE0SAYqMAWyUTRQBjAF0lEdAoLHYacZtN3V9lChoBkdAcJnJqIrOJWgHS9NoCEdAoLMAxtYSx3V9lChoBkdActGGo73fymgHS8RoCEdAoLPSEpRXOnV9lChoBkdAcielDneSCGgHS+VoCEdAoLPwJAt4A3V9lChoBkdAbf/wBHTZx2gHS9hoCEdAoLQGZNO/L3V9lChoBkdAbeZ6sQumJmgHS9hoCEdAoLQGocaOxXV9lChoBkdAcAj8cMmWt2gHS9poCEdAoLTY+r2g4HV9lChoBkdAcfT1xbSql2gHS9toCEdAoLVgIIF/x3V9lChoBkdAcZSt2cJ+lWgHS9hoCEdAoLXLsIE8rHV9lChoBkdAcNMk2gnMMmgHTRwBaAhHQKC16zC1qnF1fZQoaAZHQHCX1BMSK3xoB00WAWgIR0CgtjGjKxLTdX2UKGgGR0BvzA97ngYQaAdL9WgIR0Cgtp7zkIX1dX2UKGgGR0ByxKy3Td+HaAdL1mgIR0CgtwRxcVxkdX2UKGgGR0BwiCtU4rBkaAdL0WgIR0Cgt4yRKYiQdX2UKGgGR0BxAEdCE6DHaAdL4WgIR0Cgt+aZH/cWdX2UKGgGR0Bu/+M+/xlQaAdN7wJoCEdAoLgBS1mapnV9lChoBkdAcu2az/p+t2gHS+hoCEdAoLgRHRTjvXV9lChoBkdAcM50ihWYGGgHS8xoCEdAoLgzMvAXVXV9lChoBkdAcBHgntv4umgHTbcDaAhHQKC4ZokiUxF1fZQoaAZHQHKB+P3i705oB0vVaAhHQKC4vHeaa1F1fZQoaAZHQHICbzGxUvRoB0vbaAhHQKC5RLxI8Qt1fZQoaAZHQHHGP3SKFZhoB01TAWgIR0CguYwfZElWdX2UKGgGR0BxrPMSsbNsaAdL1GgIR0CgucxmK64EdX2UKGgGR0BCV2ZZ0SyuaAdLwmgIR0CgueN3wCr+dX2UKGgGR0ByMxwdbPhRaAdNHwFoCEdAoLohq7Ack3V9lChoBkdAcYnLYwqRU2gHS+hoCEdAoLrtlPJq7HV9lChoBkdAcoIpHI6sAGgHS+BoCEdAoLsm0VrRB3V9lChoBkdAcAoWX1J172gHS/NoCEdAoLuP4EfT1HV9lChoBkdAcBgBdD6WPmgHS/doCEdAoLuxCBwuNHV9lChoBkdAcs1pMpPRA2gHS9JoCEdAoLvh0r9VFXV9lChoBkdAcWUruYx+KGgHS/FoCEdAoLv02zfJm3V9lChoBkdAY0ZjFQ2uPmgHTegDaAhHQKC8kpjMFEB1fZQoaAZHQG9/k61b7j1oB0vPaAhHQKC874h2W6d1fZQoaAZHQHEgRO1v2oNoB0v0aAhHQKC88XZXdTJ1fZQoaAZHQGTXMKkVN6BoB03oA2gIR0CgvRr39JjEdX2UKGgGR0ByDVcjZ+QVaAdL8GgIR0CgvSlqBVdYdX2UKGgGR0BwUB0JWvKVaAdL9mgIR0CgvZOzY287dX2UKGgGR0BtqCMLncL0aAdL0WgIR0CgvhWS+xnndX2UKGgGR0BwnfQjUutfaAdNLAFoCEdAoL6qdjG1hXV9lChoBkdAcSFOqvNeMWgHS8loCEdAoL7sqaw2VHV9lChoBkdAcCzgW8AaN2gHS9poCEdAoL7r79AHFHV9lChoBkdAQPv6Eal1sGgHS+NoCEdAoL7wVuaWonV9lChoBkdAcUlGRFI/aGgHTVACaAhHQKC/FfgrH2h1fZQoaAZHQHOx5h4MWoFoB00NAWgIR0Cgvyh+WnjydX2UKGgGR0BwY1yR0U48aAdL5GgIR0Cgvzcf3evZdX2UKGgGR0BxhrXz19ORaAdL02gIR0Cgv+YFzMibdX2UKGgGR0ByYIQ4CIUKaAdL2mgIR0CgwDfC66J7dX2UKGgGR0BtuyblRxcWaAdNAAFoCEdAoMCJpDeCTXV9lChoBkdAb48Mz/IbO2gHS9loCEdAoMChDgIhQnV9lChoBkdAb6FjAi3XqmgHS99oCEdAoMEvSKFZgXV9lChoBkdAYbcENe+mFmgHTegDaAhHQKDBtMINVip1fZQoaAZHQHFF42CNCJJoB01uAWgIR0Cgwc9eIEbHdX2UKGgGR0Buf7sniNsFaAdL3GgIR0Cgwf+IuXeFdX2UKGgGR0Bww1fQa72+aAdL8WgIR0Cgwg9Dpkf+dX2UKGgGR0BxJ0KgIyCWaAdL2mgIR0Cgwjj5bhWHdX2UKGgGR0Bvr0qz7di2aAdL5GgIR0CgwmxQJokBdX2UKGgGR0BxDUemvW6LaAdL/WgIR0CgwngyVObidX2UKGgGR0BuoiIgvDgqaAdNhgFoCEdAoMKl/rjYI3V9lChoBkdAck9YoAn2I2gHS7poCEdAoMLdph4MW3V9lChoBkdAcddQA+6iCmgHTSUBaAhHQKDDGjRD1Gt1fZQoaAZHQG/MXn6l+E1oB0vKaAhHQKDDXUn5SFZ1fZQoaAZHQHM0V1fVqetoB01KAWgIR0Cgw3KrR0EHdX2UKGgGR0By+01LrX18aAdLxGgIR0CgxHPuogmrdX2UKGgGR0BwzUwj+rEMaAdL02gIR0CgxJa86FM7dX2UKGgGR0Bx5VEofCAMaAdNGgFoCEdAoMSWIfr8i3V9lChoBkdAcmvnvUjLS2gHS/ZoCEdAoMSgZZSvT3V9lChoBkdAbmtMzMzMzWgHS71oCEdAoMT4WDYh+3V9lChoBkdAcQAO6d1+zGgHS+NoCEdAoMUjRlYlp3V9lChoBkdAckeQiA2AG2gHS+BoCEdAoMVDCaZx73V9lChoBkdAcllG+9Jz1mgHS/RoCEdAoMVSn5zo2XV9lChoBkdAcAKZ1FH8TGgHS8xoCEdAoMVxM10knnV9lChoBkdAcKLAUtZmqmgHS9toCEdAoMV2GIsRQXV9lChoBkdAcPY4e9zwMGgHS7toCEdAoMYIg/1QInV9lChoBkdAcMIYfW+XaGgHS+BoCEdAoMYyuW8h93V9lChoBkdAZK0y8jAzpGgHTegDaAhHQKDGaXqqwQl1fZQoaAZHQHGhErbxmTVoB0u7aAhHQKDHBNY8uBd1fZQoaAZHQHJu5oK2KEZoB00VAWgIR0Cgxy0YbbUPdX2UKGgGR0BxqTF+/gzhaAdNQgFoCEdAoMdBa5f+j3V9lChoBkdAcylIEbHZK2gHS9BoCEdAoMdkuvllsnV9lChoBkdAcDmDv3JxN2gHS+BoCEdAoMehRyfcvnV9lChoBkdAb1fe0ojOcGgHS8hoCEdAoMgUlE7W/nV9lChoBkdAcMtASWZ7X2gHS99oCEdAoMg18LKFI3V9lChoBkdAcclsunMt9WgHS/poCEdAoMh0cU/OdHV9lChoBkdAcGfZEUj9oGgHS8FoCEdAoMiTposZpHV9lChoBkdAcN7KpDNQj2gHS7toCEdAoMinBi1Aq3V9lChoBkdAcb8MdcSoO2gHTQcBaAhHQKDI5FXq7iB1fZQoaAZHQHHL8nVoYeloB00rAWgIR0CgyPDwH7gsdX2UKGgGR0Bwuzp9qk/KaAdL3mgIR0CgyXUn5SFXdX2UKGgGR0Buw88JUo8ZaAdL72gIR0CgyuZftx+8dX2UKGgGR0BxxUZxaPjoaAdLtWgIR0CgyzGh24d7dX2UKGgGR0BvIjE3sHB2aAdL/mgIR0Cgy2K2rn1WdX2UKGgGR0By46jesPrfaAdL9GgIR0Cgy2iQcPvsdX2UKGgGR0BxClikO7QLaAdL5GgIR0Cgy3UJng5zdX2UKGgGR0Bzboi2UjcEaAdL4WgIR0CgzFTSLIgedX2UKGgGR0BwLTRoh6jWaAdL4mgIR0CgzQNhd+ocdX2UKGgGR0BwqPdN34bkaAdN4gFoCEdAoM0S+lCTlnV9lChoBkdAcuyb2USqVGgHS99oCEdAoM0/20zCUHV9lChoBkdAcg6jo6jnFGgHS/xoCEdAoM1SjN6gNHV9lChoBkdAcsIUcXFcZGgHS9JoCEdAoM2EohIOH3V9lChoBkdAcjpHpr1ui2gHS/doCEdAoM2lyimEXnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 350, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50f604413d4db30c3b308442e657eb155d90bfe0748c3db28ef55772d193d961
|
3 |
+
size 147987
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7e002a3b1f30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e002a3b1fc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e002a3b2050>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e002a3b20e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7e002a3b2170>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7e002a3b2200>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7e002a3b2290>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e002a3b2320>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7e002a3b23b0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e002a3b2440>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e002a3b24d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7e002a3b2560>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e002a353280>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1710081329891863436,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMY8H75DqT8/lVwgvf0R+L4lBom+es13PQAAAAAAAAAAejc0PnZMc7zwD2E6wjV8uEbJ073uto25AACAPwAAgD9NMaC9iLULP9fZE72RVtq+VaZ7vUBCFL0AAAAAAAAAAGbXSb5IOIQ+Yj8OPlLFo7472TQ8Yy03PQAAAAAAAAAAE7UbvgNyBbzKnh67l4NfucXfaT2cPDo6AACAPwAAgD9N5809dssjPe10X75VAQm+9PrGvU4oo7sAAAAAAAAAAENDqz4vRTs/Op9Quyplyr7N+Ko+anI0vgAAAAAAAAAAzaAAvD1qKbvwevg7NGWPPL2yRjyLW3e9AACAPwAAgD/Tvg6+pDMbP6kuP70hG+++Vh8Yvh3iIjwAAAAAAAAAALN3Kz1Im4M9YBmdvf4xIL4PUmi9Rnw8PAAAAAAAAAAAmqVVPKDe1D6Hujs8DwTcvnz7YLyVIcg7AAAAAAAAAAAACDE8Cusuu/L3xzoEmqM86LmjPNUUjL0AAIA/AACAPw25s72k5X+7C1dhPRMurzzHsso8TfyTvQAAgD8AAIA/UyuWPvauej+4sYk99li2vm3QXD4Vz+C9AAAAAAAAAABNw7c9XK98OUI2hzqXaEg1tF3zOk54obkAAIA/AAAAAGaLtj2uQ4W6q9h4Og3hGjV3OBK7ik2QuQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV+QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCeIE0SAYqMAWyUTRQBjAF0lEdAoLHYacZtN3V9lChoBkdAcJnJqIrOJWgHS9NoCEdAoLMAxtYSx3V9lChoBkdActGGo73fymgHS8RoCEdAoLPSEpRXOnV9lChoBkdAcielDneSCGgHS+VoCEdAoLPwJAt4A3V9lChoBkdAbf/wBHTZx2gHS9hoCEdAoLQGZNO/L3V9lChoBkdAbeZ6sQumJmgHS9hoCEdAoLQGocaOxXV9lChoBkdAcAj8cMmWt2gHS9poCEdAoLTY+r2g4HV9lChoBkdAcfT1xbSql2gHS9toCEdAoLVgIIF/x3V9lChoBkdAcZSt2cJ+lWgHS9hoCEdAoLXLsIE8rHV9lChoBkdAcNMk2gnMMmgHTRwBaAhHQKC16zC1qnF1fZQoaAZHQHCX1BMSK3xoB00WAWgIR0CgtjGjKxLTdX2UKGgGR0BvzA97ngYQaAdL9WgIR0Cgtp7zkIX1dX2UKGgGR0ByxKy3Td+HaAdL1mgIR0CgtwRxcVxkdX2UKGgGR0BwiCtU4rBkaAdL0WgIR0Cgt4yRKYiQdX2UKGgGR0BxAEdCE6DHaAdL4WgIR0Cgt+aZH/cWdX2UKGgGR0Bu/+M+/xlQaAdN7wJoCEdAoLgBS1mapnV9lChoBkdAcu2az/p+t2gHS+hoCEdAoLgRHRTjvXV9lChoBkdAcM50ihWYGGgHS8xoCEdAoLgzMvAXVXV9lChoBkdAcBHgntv4umgHTbcDaAhHQKC4ZokiUxF1fZQoaAZHQHKB+P3i705oB0vVaAhHQKC4vHeaa1F1fZQoaAZHQHICbzGxUvRoB0vbaAhHQKC5RLxI8Qt1fZQoaAZHQHHGP3SKFZhoB01TAWgIR0CguYwfZElWdX2UKGgGR0BxrPMSsbNsaAdL1GgIR0CgucxmK64EdX2UKGgGR0BCV2ZZ0SyuaAdLwmgIR0CgueN3wCr+dX2UKGgGR0ByMxwdbPhRaAdNHwFoCEdAoLohq7Ack3V9lChoBkdAcYnLYwqRU2gHS+hoCEdAoLrtlPJq7HV9lChoBkdAcoIpHI6sAGgHS+BoCEdAoLsm0VrRB3V9lChoBkdAcAoWX1J172gHS/NoCEdAoLuP4EfT1HV9lChoBkdAcBgBdD6WPmgHS/doCEdAoLuxCBwuNHV9lChoBkdAcs1pMpPRA2gHS9JoCEdAoLvh0r9VFXV9lChoBkdAcWUruYx+KGgHS/FoCEdAoLv02zfJm3V9lChoBkdAY0ZjFQ2uPmgHTegDaAhHQKC8kpjMFEB1fZQoaAZHQG9/k61b7j1oB0vPaAhHQKC874h2W6d1fZQoaAZHQHEgRO1v2oNoB0v0aAhHQKC88XZXdTJ1fZQoaAZHQGTXMKkVN6BoB03oA2gIR0CgvRr39JjEdX2UKGgGR0ByDVcjZ+QVaAdL8GgIR0CgvSlqBVdYdX2UKGgGR0BwUB0JWvKVaAdL9mgIR0CgvZOzY287dX2UKGgGR0BtqCMLncL0aAdL0WgIR0CgvhWS+xnndX2UKGgGR0BwnfQjUutfaAdNLAFoCEdAoL6qdjG1hXV9lChoBkdAcSFOqvNeMWgHS8loCEdAoL7sqaw2VHV9lChoBkdAcCzgW8AaN2gHS9poCEdAoL7r79AHFHV9lChoBkdAQPv6Eal1sGgHS+NoCEdAoL7wVuaWonV9lChoBkdAcUlGRFI/aGgHTVACaAhHQKC/FfgrH2h1fZQoaAZHQHOx5h4MWoFoB00NAWgIR0Cgvyh+WnjydX2UKGgGR0BwY1yR0U48aAdL5GgIR0Cgvzcf3evZdX2UKGgGR0BxhrXz19ORaAdL02gIR0Cgv+YFzMibdX2UKGgGR0ByYIQ4CIUKaAdL2mgIR0CgwDfC66J7dX2UKGgGR0BtuyblRxcWaAdNAAFoCEdAoMCJpDeCTXV9lChoBkdAb48Mz/IbO2gHS9loCEdAoMChDgIhQnV9lChoBkdAb6FjAi3XqmgHS99oCEdAoMEvSKFZgXV9lChoBkdAYbcENe+mFmgHTegDaAhHQKDBtMINVip1fZQoaAZHQHFF42CNCJJoB01uAWgIR0Cgwc9eIEbHdX2UKGgGR0Buf7sniNsFaAdL3GgIR0Cgwf+IuXeFdX2UKGgGR0Bww1fQa72+aAdL8WgIR0Cgwg9Dpkf+dX2UKGgGR0BxJ0KgIyCWaAdL2mgIR0Cgwjj5bhWHdX2UKGgGR0Bvr0qz7di2aAdL5GgIR0CgwmxQJokBdX2UKGgGR0BxDUemvW6LaAdL/WgIR0CgwngyVObidX2UKGgGR0BuoiIgvDgqaAdNhgFoCEdAoMKl/rjYI3V9lChoBkdAck9YoAn2I2gHS7poCEdAoMLdph4MW3V9lChoBkdAcddQA+6iCmgHTSUBaAhHQKDDGjRD1Gt1fZQoaAZHQG/MXn6l+E1oB0vKaAhHQKDDXUn5SFZ1fZQoaAZHQHM0V1fVqetoB01KAWgIR0Cgw3KrR0EHdX2UKGgGR0By+01LrX18aAdLxGgIR0CgxHPuogmrdX2UKGgGR0BwzUwj+rEMaAdL02gIR0CgxJa86FM7dX2UKGgGR0Bx5VEofCAMaAdNGgFoCEdAoMSWIfr8i3V9lChoBkdAcmvnvUjLS2gHS/ZoCEdAoMSgZZSvT3V9lChoBkdAbmtMzMzMzWgHS71oCEdAoMT4WDYh+3V9lChoBkdAcQAO6d1+zGgHS+NoCEdAoMUjRlYlp3V9lChoBkdAckeQiA2AG2gHS+BoCEdAoMVDCaZx73V9lChoBkdAcllG+9Jz1mgHS/RoCEdAoMVSn5zo2XV9lChoBkdAcAKZ1FH8TGgHS8xoCEdAoMVxM10knnV9lChoBkdAcKLAUtZmqmgHS9toCEdAoMV2GIsRQXV9lChoBkdAcPY4e9zwMGgHS7toCEdAoMYIg/1QInV9lChoBkdAcMIYfW+XaGgHS+BoCEdAoMYyuW8h93V9lChoBkdAZK0y8jAzpGgHTegDaAhHQKDGaXqqwQl1fZQoaAZHQHGhErbxmTVoB0u7aAhHQKDHBNY8uBd1fZQoaAZHQHJu5oK2KEZoB00VAWgIR0Cgxy0YbbUPdX2UKGgGR0BxqTF+/gzhaAdNQgFoCEdAoMdBa5f+j3V9lChoBkdAcylIEbHZK2gHS9BoCEdAoMdkuvllsnV9lChoBkdAcDmDv3JxN2gHS+BoCEdAoMehRyfcvnV9lChoBkdAb1fe0ojOcGgHS8hoCEdAoMgUlE7W/nV9lChoBkdAcMtASWZ7X2gHS99oCEdAoMg18LKFI3V9lChoBkdAcclsunMt9WgHS/poCEdAoMh0cU/OdHV9lChoBkdAcGfZEUj9oGgHS8FoCEdAoMiTposZpHV9lChoBkdAcN7KpDNQj2gHS7toCEdAoMinBi1Aq3V9lChoBkdAcb8MdcSoO2gHTQcBaAhHQKDI5FXq7iB1fZQoaAZHQHHL8nVoYeloB00rAWgIR0CgyPDwH7gsdX2UKGgGR0Bwuzp9qk/KaAdL3mgIR0CgyXUn5SFXdX2UKGgGR0Buw88JUo8ZaAdL72gIR0CgyuZftx+8dX2UKGgGR0BxxUZxaPjoaAdLtWgIR0CgyzGh24d7dX2UKGgGR0BvIjE3sHB2aAdL/mgIR0Cgy2K2rn1WdX2UKGgGR0By46jesPrfaAdL9GgIR0Cgy2iQcPvsdX2UKGgGR0BxClikO7QLaAdL5GgIR0Cgy3UJng5zdX2UKGgGR0Bzboi2UjcEaAdL4WgIR0CgzFTSLIgedX2UKGgGR0BwLTRoh6jWaAdL4mgIR0CgzQNhd+ocdX2UKGgGR0BwqPdN34bkaAdN4gFoCEdAoM0S+lCTlnV9lChoBkdAcuyb2USqVGgHS99oCEdAoM0/20zCUHV9lChoBkdAcg6jo6jnFGgHS/xoCEdAoM1SjN6gNHV9lChoBkdAcsIUcXFcZGgHS9JoCEdAoM2EohIOH3V9lChoBkdAcjpHpr1ui2gHS/doCEdAoM2lyimEXnVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 350,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:458a3365b1fdf58a27fb905f4741b6ecd55764eb64398bdc1fc4484742d2fa85
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12dd7961e6e680cf30eedc8b85d8e98f9eacaff8da7f4b1010c5144bfe6d0b0a
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (159 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 267.02728640000004, "std_reward": 15.798061346025861, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-10T15:03:41.174010"}
|