ed-butcher commited on
Commit
4e670d4
·
verified ·
1 Parent(s): 64076eb

Upload PPO LunarLander-v2 trained agent for the first time

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 267.03 +/- 15.80
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e002a3b1f30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e002a3b1fc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e002a3b2050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e002a3b20e0>", "_build": "<function ActorCriticPolicy._build at 0x7e002a3b2170>", "forward": "<function ActorCriticPolicy.forward at 0x7e002a3b2200>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e002a3b2290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e002a3b2320>", "_predict": "<function ActorCriticPolicy._predict at 0x7e002a3b23b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e002a3b2440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e002a3b24d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e002a3b2560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e002a353280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710081329891863436, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMY8H75DqT8/lVwgvf0R+L4lBom+es13PQAAAAAAAAAAejc0PnZMc7zwD2E6wjV8uEbJ073uto25AACAPwAAgD9NMaC9iLULP9fZE72RVtq+VaZ7vUBCFL0AAAAAAAAAAGbXSb5IOIQ+Yj8OPlLFo7472TQ8Yy03PQAAAAAAAAAAE7UbvgNyBbzKnh67l4NfucXfaT2cPDo6AACAPwAAgD9N5809dssjPe10X75VAQm+9PrGvU4oo7sAAAAAAAAAAENDqz4vRTs/Op9Quyplyr7N+Ko+anI0vgAAAAAAAAAAzaAAvD1qKbvwevg7NGWPPL2yRjyLW3e9AACAPwAAgD/Tvg6+pDMbP6kuP70hG+++Vh8Yvh3iIjwAAAAAAAAAALN3Kz1Im4M9YBmdvf4xIL4PUmi9Rnw8PAAAAAAAAAAAmqVVPKDe1D6Hujs8DwTcvnz7YLyVIcg7AAAAAAAAAAAACDE8Cusuu/L3xzoEmqM86LmjPNUUjL0AAIA/AACAPw25s72k5X+7C1dhPRMurzzHsso8TfyTvQAAgD8AAIA/UyuWPvauej+4sYk99li2vm3QXD4Vz+C9AAAAAAAAAABNw7c9XK98OUI2hzqXaEg1tF3zOk54obkAAIA/AAAAAGaLtj2uQ4W6q9h4Og3hGjV3OBK7ik2QuQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCeIE0SAYqMAWyUTRQBjAF0lEdAoLHYacZtN3V9lChoBkdAcJnJqIrOJWgHS9NoCEdAoLMAxtYSx3V9lChoBkdActGGo73fymgHS8RoCEdAoLPSEpRXOnV9lChoBkdAcielDneSCGgHS+VoCEdAoLPwJAt4A3V9lChoBkdAbf/wBHTZx2gHS9hoCEdAoLQGZNO/L3V9lChoBkdAbeZ6sQumJmgHS9hoCEdAoLQGocaOxXV9lChoBkdAcAj8cMmWt2gHS9poCEdAoLTY+r2g4HV9lChoBkdAcfT1xbSql2gHS9toCEdAoLVgIIF/x3V9lChoBkdAcZSt2cJ+lWgHS9hoCEdAoLXLsIE8rHV9lChoBkdAcNMk2gnMMmgHTRwBaAhHQKC16zC1qnF1fZQoaAZHQHCX1BMSK3xoB00WAWgIR0CgtjGjKxLTdX2UKGgGR0BvzA97ngYQaAdL9WgIR0Cgtp7zkIX1dX2UKGgGR0ByxKy3Td+HaAdL1mgIR0CgtwRxcVxkdX2UKGgGR0BwiCtU4rBkaAdL0WgIR0Cgt4yRKYiQdX2UKGgGR0BxAEdCE6DHaAdL4WgIR0Cgt+aZH/cWdX2UKGgGR0Bu/+M+/xlQaAdN7wJoCEdAoLgBS1mapnV9lChoBkdAcu2az/p+t2gHS+hoCEdAoLgRHRTjvXV9lChoBkdAcM50ihWYGGgHS8xoCEdAoLgzMvAXVXV9lChoBkdAcBHgntv4umgHTbcDaAhHQKC4ZokiUxF1fZQoaAZHQHKB+P3i705oB0vVaAhHQKC4vHeaa1F1fZQoaAZHQHICbzGxUvRoB0vbaAhHQKC5RLxI8Qt1fZQoaAZHQHHGP3SKFZhoB01TAWgIR0CguYwfZElWdX2UKGgGR0BxrPMSsbNsaAdL1GgIR0CgucxmK64EdX2UKGgGR0BCV2ZZ0SyuaAdLwmgIR0CgueN3wCr+dX2UKGgGR0ByMxwdbPhRaAdNHwFoCEdAoLohq7Ack3V9lChoBkdAcYnLYwqRU2gHS+hoCEdAoLrtlPJq7HV9lChoBkdAcoIpHI6sAGgHS+BoCEdAoLsm0VrRB3V9lChoBkdAcAoWX1J172gHS/NoCEdAoLuP4EfT1HV9lChoBkdAcBgBdD6WPmgHS/doCEdAoLuxCBwuNHV9lChoBkdAcs1pMpPRA2gHS9JoCEdAoLvh0r9VFXV9lChoBkdAcWUruYx+KGgHS/FoCEdAoLv02zfJm3V9lChoBkdAY0ZjFQ2uPmgHTegDaAhHQKC8kpjMFEB1fZQoaAZHQG9/k61b7j1oB0vPaAhHQKC874h2W6d1fZQoaAZHQHEgRO1v2oNoB0v0aAhHQKC88XZXdTJ1fZQoaAZHQGTXMKkVN6BoB03oA2gIR0CgvRr39JjEdX2UKGgGR0ByDVcjZ+QVaAdL8GgIR0CgvSlqBVdYdX2UKGgGR0BwUB0JWvKVaAdL9mgIR0CgvZOzY287dX2UKGgGR0BtqCMLncL0aAdL0WgIR0CgvhWS+xnndX2UKGgGR0BwnfQjUutfaAdNLAFoCEdAoL6qdjG1hXV9lChoBkdAcSFOqvNeMWgHS8loCEdAoL7sqaw2VHV9lChoBkdAcCzgW8AaN2gHS9poCEdAoL7r79AHFHV9lChoBkdAQPv6Eal1sGgHS+NoCEdAoL7wVuaWonV9lChoBkdAcUlGRFI/aGgHTVACaAhHQKC/FfgrH2h1fZQoaAZHQHOx5h4MWoFoB00NAWgIR0Cgvyh+WnjydX2UKGgGR0BwY1yR0U48aAdL5GgIR0Cgvzcf3evZdX2UKGgGR0BxhrXz19ORaAdL02gIR0Cgv+YFzMibdX2UKGgGR0ByYIQ4CIUKaAdL2mgIR0CgwDfC66J7dX2UKGgGR0BtuyblRxcWaAdNAAFoCEdAoMCJpDeCTXV9lChoBkdAb48Mz/IbO2gHS9loCEdAoMChDgIhQnV9lChoBkdAb6FjAi3XqmgHS99oCEdAoMEvSKFZgXV9lChoBkdAYbcENe+mFmgHTegDaAhHQKDBtMINVip1fZQoaAZHQHFF42CNCJJoB01uAWgIR0Cgwc9eIEbHdX2UKGgGR0Buf7sniNsFaAdL3GgIR0Cgwf+IuXeFdX2UKGgGR0Bww1fQa72+aAdL8WgIR0Cgwg9Dpkf+dX2UKGgGR0BxJ0KgIyCWaAdL2mgIR0Cgwjj5bhWHdX2UKGgGR0Bvr0qz7di2aAdL5GgIR0CgwmxQJokBdX2UKGgGR0BxDUemvW6LaAdL/WgIR0CgwngyVObidX2UKGgGR0BuoiIgvDgqaAdNhgFoCEdAoMKl/rjYI3V9lChoBkdAck9YoAn2I2gHS7poCEdAoMLdph4MW3V9lChoBkdAcddQA+6iCmgHTSUBaAhHQKDDGjRD1Gt1fZQoaAZHQG/MXn6l+E1oB0vKaAhHQKDDXUn5SFZ1fZQoaAZHQHM0V1fVqetoB01KAWgIR0Cgw3KrR0EHdX2UKGgGR0By+01LrX18aAdLxGgIR0CgxHPuogmrdX2UKGgGR0BwzUwj+rEMaAdL02gIR0CgxJa86FM7dX2UKGgGR0Bx5VEofCAMaAdNGgFoCEdAoMSWIfr8i3V9lChoBkdAcmvnvUjLS2gHS/ZoCEdAoMSgZZSvT3V9lChoBkdAbmtMzMzMzWgHS71oCEdAoMT4WDYh+3V9lChoBkdAcQAO6d1+zGgHS+NoCEdAoMUjRlYlp3V9lChoBkdAckeQiA2AG2gHS+BoCEdAoMVDCaZx73V9lChoBkdAcllG+9Jz1mgHS/RoCEdAoMVSn5zo2XV9lChoBkdAcAKZ1FH8TGgHS8xoCEdAoMVxM10knnV9lChoBkdAcKLAUtZmqmgHS9toCEdAoMV2GIsRQXV9lChoBkdAcPY4e9zwMGgHS7toCEdAoMYIg/1QInV9lChoBkdAcMIYfW+XaGgHS+BoCEdAoMYyuW8h93V9lChoBkdAZK0y8jAzpGgHTegDaAhHQKDGaXqqwQl1fZQoaAZHQHGhErbxmTVoB0u7aAhHQKDHBNY8uBd1fZQoaAZHQHJu5oK2KEZoB00VAWgIR0Cgxy0YbbUPdX2UKGgGR0BxqTF+/gzhaAdNQgFoCEdAoMdBa5f+j3V9lChoBkdAcylIEbHZK2gHS9BoCEdAoMdkuvllsnV9lChoBkdAcDmDv3JxN2gHS+BoCEdAoMehRyfcvnV9lChoBkdAb1fe0ojOcGgHS8hoCEdAoMgUlE7W/nV9lChoBkdAcMtASWZ7X2gHS99oCEdAoMg18LKFI3V9lChoBkdAcclsunMt9WgHS/poCEdAoMh0cU/OdHV9lChoBkdAcGfZEUj9oGgHS8FoCEdAoMiTposZpHV9lChoBkdAcN7KpDNQj2gHS7toCEdAoMinBi1Aq3V9lChoBkdAcb8MdcSoO2gHTQcBaAhHQKDI5FXq7iB1fZQoaAZHQHHL8nVoYeloB00rAWgIR0CgyPDwH7gsdX2UKGgGR0Bwuzp9qk/KaAdL3mgIR0CgyXUn5SFXdX2UKGgGR0Buw88JUo8ZaAdL72gIR0CgyuZftx+8dX2UKGgGR0BxxUZxaPjoaAdLtWgIR0CgyzGh24d7dX2UKGgGR0BvIjE3sHB2aAdL/mgIR0Cgy2K2rn1WdX2UKGgGR0By46jesPrfaAdL9GgIR0Cgy2iQcPvsdX2UKGgGR0BxClikO7QLaAdL5GgIR0Cgy3UJng5zdX2UKGgGR0Bzboi2UjcEaAdL4WgIR0CgzFTSLIgedX2UKGgGR0BwLTRoh6jWaAdL4mgIR0CgzQNhd+ocdX2UKGgGR0BwqPdN34bkaAdN4gFoCEdAoM0S+lCTlnV9lChoBkdAcuyb2USqVGgHS99oCEdAoM0/20zCUHV9lChoBkdAcg6jo6jnFGgHS/xoCEdAoM1SjN6gNHV9lChoBkdAcsIUcXFcZGgHS9JoCEdAoM2EohIOH3V9lChoBkdAcjpHpr1ui2gHS/doCEdAoM2lyimEXnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 350, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50f604413d4db30c3b308442e657eb155d90bfe0748c3db28ef55772d193d961
3
+ size 147987
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7e002a3b1f30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e002a3b1fc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e002a3b2050>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e002a3b20e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7e002a3b2170>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7e002a3b2200>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e002a3b2290>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e002a3b2320>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7e002a3b23b0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e002a3b2440>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e002a3b24d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e002a3b2560>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7e002a353280>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1710081329891863436,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMY8H75DqT8/lVwgvf0R+L4lBom+es13PQAAAAAAAAAAejc0PnZMc7zwD2E6wjV8uEbJ073uto25AACAPwAAgD9NMaC9iLULP9fZE72RVtq+VaZ7vUBCFL0AAAAAAAAAAGbXSb5IOIQ+Yj8OPlLFo7472TQ8Yy03PQAAAAAAAAAAE7UbvgNyBbzKnh67l4NfucXfaT2cPDo6AACAPwAAgD9N5809dssjPe10X75VAQm+9PrGvU4oo7sAAAAAAAAAAENDqz4vRTs/Op9Quyplyr7N+Ko+anI0vgAAAAAAAAAAzaAAvD1qKbvwevg7NGWPPL2yRjyLW3e9AACAPwAAgD/Tvg6+pDMbP6kuP70hG+++Vh8Yvh3iIjwAAAAAAAAAALN3Kz1Im4M9YBmdvf4xIL4PUmi9Rnw8PAAAAAAAAAAAmqVVPKDe1D6Hujs8DwTcvnz7YLyVIcg7AAAAAAAAAAAACDE8Cusuu/L3xzoEmqM86LmjPNUUjL0AAIA/AACAPw25s72k5X+7C1dhPRMurzzHsso8TfyTvQAAgD8AAIA/UyuWPvauej+4sYk99li2vm3QXD4Vz+C9AAAAAAAAAABNw7c9XK98OUI2hzqXaEg1tF3zOk54obkAAIA/AAAAAGaLtj2uQ4W6q9h4Og3hGjV3OBK7ik2QuQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV+QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCeIE0SAYqMAWyUTRQBjAF0lEdAoLHYacZtN3V9lChoBkdAcJnJqIrOJWgHS9NoCEdAoLMAxtYSx3V9lChoBkdActGGo73fymgHS8RoCEdAoLPSEpRXOnV9lChoBkdAcielDneSCGgHS+VoCEdAoLPwJAt4A3V9lChoBkdAbf/wBHTZx2gHS9hoCEdAoLQGZNO/L3V9lChoBkdAbeZ6sQumJmgHS9hoCEdAoLQGocaOxXV9lChoBkdAcAj8cMmWt2gHS9poCEdAoLTY+r2g4HV9lChoBkdAcfT1xbSql2gHS9toCEdAoLVgIIF/x3V9lChoBkdAcZSt2cJ+lWgHS9hoCEdAoLXLsIE8rHV9lChoBkdAcNMk2gnMMmgHTRwBaAhHQKC16zC1qnF1fZQoaAZHQHCX1BMSK3xoB00WAWgIR0CgtjGjKxLTdX2UKGgGR0BvzA97ngYQaAdL9WgIR0Cgtp7zkIX1dX2UKGgGR0ByxKy3Td+HaAdL1mgIR0CgtwRxcVxkdX2UKGgGR0BwiCtU4rBkaAdL0WgIR0Cgt4yRKYiQdX2UKGgGR0BxAEdCE6DHaAdL4WgIR0Cgt+aZH/cWdX2UKGgGR0Bu/+M+/xlQaAdN7wJoCEdAoLgBS1mapnV9lChoBkdAcu2az/p+t2gHS+hoCEdAoLgRHRTjvXV9lChoBkdAcM50ihWYGGgHS8xoCEdAoLgzMvAXVXV9lChoBkdAcBHgntv4umgHTbcDaAhHQKC4ZokiUxF1fZQoaAZHQHKB+P3i705oB0vVaAhHQKC4vHeaa1F1fZQoaAZHQHICbzGxUvRoB0vbaAhHQKC5RLxI8Qt1fZQoaAZHQHHGP3SKFZhoB01TAWgIR0CguYwfZElWdX2UKGgGR0BxrPMSsbNsaAdL1GgIR0CgucxmK64EdX2UKGgGR0BCV2ZZ0SyuaAdLwmgIR0CgueN3wCr+dX2UKGgGR0ByMxwdbPhRaAdNHwFoCEdAoLohq7Ack3V9lChoBkdAcYnLYwqRU2gHS+hoCEdAoLrtlPJq7HV9lChoBkdAcoIpHI6sAGgHS+BoCEdAoLsm0VrRB3V9lChoBkdAcAoWX1J172gHS/NoCEdAoLuP4EfT1HV9lChoBkdAcBgBdD6WPmgHS/doCEdAoLuxCBwuNHV9lChoBkdAcs1pMpPRA2gHS9JoCEdAoLvh0r9VFXV9lChoBkdAcWUruYx+KGgHS/FoCEdAoLv02zfJm3V9lChoBkdAY0ZjFQ2uPmgHTegDaAhHQKC8kpjMFEB1fZQoaAZHQG9/k61b7j1oB0vPaAhHQKC874h2W6d1fZQoaAZHQHEgRO1v2oNoB0v0aAhHQKC88XZXdTJ1fZQoaAZHQGTXMKkVN6BoB03oA2gIR0CgvRr39JjEdX2UKGgGR0ByDVcjZ+QVaAdL8GgIR0CgvSlqBVdYdX2UKGgGR0BwUB0JWvKVaAdL9mgIR0CgvZOzY287dX2UKGgGR0BtqCMLncL0aAdL0WgIR0CgvhWS+xnndX2UKGgGR0BwnfQjUutfaAdNLAFoCEdAoL6qdjG1hXV9lChoBkdAcSFOqvNeMWgHS8loCEdAoL7sqaw2VHV9lChoBkdAcCzgW8AaN2gHS9poCEdAoL7r79AHFHV9lChoBkdAQPv6Eal1sGgHS+NoCEdAoL7wVuaWonV9lChoBkdAcUlGRFI/aGgHTVACaAhHQKC/FfgrH2h1fZQoaAZHQHOx5h4MWoFoB00NAWgIR0Cgvyh+WnjydX2UKGgGR0BwY1yR0U48aAdL5GgIR0Cgvzcf3evZdX2UKGgGR0BxhrXz19ORaAdL02gIR0Cgv+YFzMibdX2UKGgGR0ByYIQ4CIUKaAdL2mgIR0CgwDfC66J7dX2UKGgGR0BtuyblRxcWaAdNAAFoCEdAoMCJpDeCTXV9lChoBkdAb48Mz/IbO2gHS9loCEdAoMChDgIhQnV9lChoBkdAb6FjAi3XqmgHS99oCEdAoMEvSKFZgXV9lChoBkdAYbcENe+mFmgHTegDaAhHQKDBtMINVip1fZQoaAZHQHFF42CNCJJoB01uAWgIR0Cgwc9eIEbHdX2UKGgGR0Buf7sniNsFaAdL3GgIR0Cgwf+IuXeFdX2UKGgGR0Bww1fQa72+aAdL8WgIR0Cgwg9Dpkf+dX2UKGgGR0BxJ0KgIyCWaAdL2mgIR0Cgwjj5bhWHdX2UKGgGR0Bvr0qz7di2aAdL5GgIR0CgwmxQJokBdX2UKGgGR0BxDUemvW6LaAdL/WgIR0CgwngyVObidX2UKGgGR0BuoiIgvDgqaAdNhgFoCEdAoMKl/rjYI3V9lChoBkdAck9YoAn2I2gHS7poCEdAoMLdph4MW3V9lChoBkdAcddQA+6iCmgHTSUBaAhHQKDDGjRD1Gt1fZQoaAZHQG/MXn6l+E1oB0vKaAhHQKDDXUn5SFZ1fZQoaAZHQHM0V1fVqetoB01KAWgIR0Cgw3KrR0EHdX2UKGgGR0By+01LrX18aAdLxGgIR0CgxHPuogmrdX2UKGgGR0BwzUwj+rEMaAdL02gIR0CgxJa86FM7dX2UKGgGR0Bx5VEofCAMaAdNGgFoCEdAoMSWIfr8i3V9lChoBkdAcmvnvUjLS2gHS/ZoCEdAoMSgZZSvT3V9lChoBkdAbmtMzMzMzWgHS71oCEdAoMT4WDYh+3V9lChoBkdAcQAO6d1+zGgHS+NoCEdAoMUjRlYlp3V9lChoBkdAckeQiA2AG2gHS+BoCEdAoMVDCaZx73V9lChoBkdAcllG+9Jz1mgHS/RoCEdAoMVSn5zo2XV9lChoBkdAcAKZ1FH8TGgHS8xoCEdAoMVxM10knnV9lChoBkdAcKLAUtZmqmgHS9toCEdAoMV2GIsRQXV9lChoBkdAcPY4e9zwMGgHS7toCEdAoMYIg/1QInV9lChoBkdAcMIYfW+XaGgHS+BoCEdAoMYyuW8h93V9lChoBkdAZK0y8jAzpGgHTegDaAhHQKDGaXqqwQl1fZQoaAZHQHGhErbxmTVoB0u7aAhHQKDHBNY8uBd1fZQoaAZHQHJu5oK2KEZoB00VAWgIR0Cgxy0YbbUPdX2UKGgGR0BxqTF+/gzhaAdNQgFoCEdAoMdBa5f+j3V9lChoBkdAcylIEbHZK2gHS9BoCEdAoMdkuvllsnV9lChoBkdAcDmDv3JxN2gHS+BoCEdAoMehRyfcvnV9lChoBkdAb1fe0ojOcGgHS8hoCEdAoMgUlE7W/nV9lChoBkdAcMtASWZ7X2gHS99oCEdAoMg18LKFI3V9lChoBkdAcclsunMt9WgHS/poCEdAoMh0cU/OdHV9lChoBkdAcGfZEUj9oGgHS8FoCEdAoMiTposZpHV9lChoBkdAcN7KpDNQj2gHS7toCEdAoMinBi1Aq3V9lChoBkdAcb8MdcSoO2gHTQcBaAhHQKDI5FXq7iB1fZQoaAZHQHHL8nVoYeloB00rAWgIR0CgyPDwH7gsdX2UKGgGR0Bwuzp9qk/KaAdL3mgIR0CgyXUn5SFXdX2UKGgGR0Buw88JUo8ZaAdL72gIR0CgyuZftx+8dX2UKGgGR0BxxUZxaPjoaAdLtWgIR0CgyzGh24d7dX2UKGgGR0BvIjE3sHB2aAdL/mgIR0Cgy2K2rn1WdX2UKGgGR0By46jesPrfaAdL9GgIR0Cgy2iQcPvsdX2UKGgGR0BxClikO7QLaAdL5GgIR0Cgy3UJng5zdX2UKGgGR0Bzboi2UjcEaAdL4WgIR0CgzFTSLIgedX2UKGgGR0BwLTRoh6jWaAdL4mgIR0CgzQNhd+ocdX2UKGgGR0BwqPdN34bkaAdN4gFoCEdAoM0S+lCTlnV9lChoBkdAcuyb2USqVGgHS99oCEdAoM0/20zCUHV9lChoBkdAcg6jo6jnFGgHS/xoCEdAoM1SjN6gNHV9lChoBkdAcsIUcXFcZGgHS9JoCEdAoM2EohIOH3V9lChoBkdAcjpHpr1ui2gHS/doCEdAoM2lyimEXnVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 350,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:458a3365b1fdf58a27fb905f4741b6ecd55764eb64398bdc1fc4484742d2fa85
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12dd7961e6e680cf30eedc8b85d8e98f9eacaff8da7f4b1010c5144bfe6d0b0a
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (159 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 267.02728640000004, "std_reward": 15.798061346025861, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-10T15:03:41.174010"}