Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2-10env-1E6step.zip +3 -0
- ppo-LunarLander-v2-10env-1E6step/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-10env-1E6step/data +96 -0
- ppo-LunarLander-v2-10env-1E6step/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-10env-1E6step/policy.pth +3 -0
- ppo-LunarLander-v2-10env-1E6step/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-10env-1E6step/system_info.txt +9 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 262.02 +/- 14.89
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7faae4609940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faae46099d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faae4609a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faae4609af0>", "_build": "<function ActorCriticPolicy._build at 0x7faae4609b80>", "forward": "<function ActorCriticPolicy.forward at 0x7faae4609c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7faae4609ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faae4609d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7faae4609dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faae4609e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faae4609ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faae4609f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7faae460a8c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1003520, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685043326318361206, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYKAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwqFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG6n55Rjz7OMAWyUTUYBjAF0lEdAk9/HXNC7b3V9lChoBkdAbhoilBQem2gHTQcBaAhHQJPgEfPomol1fZQoaAZHQHFNgJHAh0RoB00ZAWgIR0CT4GFUhmoSdX2UKGgGR0By2+94/u9faAdNIwFoCEdAk+DxUBGQS3V9lChoBkdAboaAT7EYO2gHTUcBaAhHQJPhwNqgyuZ1fZQoaAZHQHEvLgKnei1oB0v1aAhHQJPiFTIeYD11fZQoaAZHQHLsWDUVi4JoB00fAWgIR0CT4mYeT3ZgdX2UKGgGR0BJb1y/9Hc2aAdLwWgIR0CT4qWSEDhcdX2UKGgGR0BzJFT5wfhdaAdNAwFoCEdAk+P2HYYixHV9lChoBkdAUZizv7WNFWgHS71oCEdAk+Rn3UQTVXV9lChoBkdAczigDRtxdmgHTQABaAhHQJPk3bWVeKN1fZQoaAZHQHK5JQxesxRoB008AWgIR0CT5y8VYZEVdX2UKGgGR0Ai7uQ6p5u7aAdLyWgIR0CT5zp/wy6+dX2UKGgGR0ByBwlNUOuraAdNKAFoCEdAk+dUfkmx+3V9lChoBkdAcZlyzXz19WgHTSEBaAhHQJPnyTY/Vy51fZQoaAZHQG1RbPhQ3xZoB00UAWgIR0CT6Ert3OfNdX2UKGgGR0BxYgqqfe1saAdNCAFoCEdAk+hlNUOuq3V9lChoBkdAcKBymhufmWgHTRoBaAhHQJPpXb5/LDB1fZQoaAZHQHJ2G0Re1KJoB00YAWgIR0CT6oAEdNnHdX2UKGgGR0By+cSzw+dLaAdL/GgIR0CT6sLowEhadX2UKGgGR0BxkTBfrrxBaAdNMwFoCEdAk+uHhS9/SnV9lChoBkdAcYEq1PWQOmgHTQMBaAhHQJPtaTB68g91fZQoaAZHQHFkUxEfDDVoB00HAWgIR0CT7WuVopQUdX2UKGgGR0ByCGbiIcioaAdNBAFoCEdAk+3m+PBBRnV9lChoBkdAcXSb349HMGgHTSoBaAhHQJPuNyDIzWR1fZQoaAZHQHHrGq94/u9oB00RAWgIR0CT7qxYaHbidX2UKGgGR0BuWVR1oxpMaAdNKAFoCEdAk/78xXXAdnV9lChoBkdAbv1/kNnXd2gHTSYBaAhHQJQALk4m1IB1fZQoaAZHQG+nv2oNutRoB00FAWgIR0CUAJSh8IAwdX2UKGgGR0BtJU5fdAPeaAdL9mgIR0CUAVYjjaPCdX2UKGgGR0Bs24yfthNNaAdNNgFoCEdAlAIvwd8zAXV9lChoBkdASO93GGVRk2gHS+VoCEdAlALXVoYek3V9lChoBkdAcdcV8CxNZmgHTScBaAhHQJQEtGOMl1N1fZQoaAZHQG28BPCVKPJoB00cAWgIR0CUBWaJQ+EAdX2UKGgGR0BvTETQE6kqaAdNCAFoCEdAlAVv/WDpT3V9lChoBkdAcKPZDzAerGgHTTEBaAhHQJQFnHNorWl1fZQoaAZHQHEjc3IdU85oB00eAWgIR0CUBrVfNRm9dX2UKGgGR0BwAj8vVVghaAdNDgFoCEdAlAfqSs8xK3V9lChoBkdAcTpxW1c+q2gHTTABaAhHQJQIV0nw5Np1fZQoaAZHQHGafGdZq21oB00WAWgIR0CUCN+zt1IRdX2UKGgGR0Bwz9tZV4oraAdL+GgIR0CUCOFOfukUdX2UKGgGR0BxRRv0h/y5aAdNGgFoCEdAlAooEOiFkHV9lChoBkdAbag4NI9TxWgHTQwBaAhHQJQLi49X9zh1fZQoaAZHQHJEWqxTsIFoB00MAWgIR0CUDCfI0ZWJdX2UKGgGR0Bwp0yxiXpoaAdNFgFoCEdAlAySdWhh6XV9lChoBkdAcpzbz9S/CmgHTSEBaAhHQJQMrENvwVl1fZQoaAZHQHKjtKZlWfdoB00CAWgIR0CUDRmeUY8/dX2UKGgGR0BwQnjsD4gzaAdNEAFoCEdAlA8j0QK8c3V9lChoBkdAcMrDvE0iyWgHTSQBaAhHQJQPPqFAVwh1fZQoaAZHQHJ+50bLlmxoB00WAWgIR0CUD9f0VafSdX2UKGgGR0Bx1fdKujh2aAdNGQFoCEdAlA/rSmZVn3V9lChoBkdAcSOISDh99mgHTRUBaAhHQJQRIQL/jsF1fZQoaAZHQHNPaLS/j81oB0v3aAhHQJQSN68g6lt1fZQoaAZHQHHDW0Re1KJoB0vpaAhHQJQSR//echF1fZQoaAZHQHHr1d9lVcVoB00WAWgIR0CUEmjTrmhedX2UKGgGR0BxxzW4EwFlaAdNBwFoCEdAlBL/KdQO4HV9lChoBkdAcNN0wrUb1mgHTRMBaAhHQJQTqQmu1Wt1fZQoaAZHQHCsfTw2ETRoB00IAWgIR0CUFVlZowmFdX2UKGgGR0BwaI3uNPxhaAdNNAFoCEdAlBaA/1QIlnV9lChoBkdAbO0JwbVBlmgHTSIBaAhHQJQW3w9aEBd1fZQoaAZHQHM2gyEcsDpoB0v+aAhHQJQXXVFx4pt1fZQoaAZHQHC4xPO6d2BoB007AWgIR0CUF2t1ZDArdX2UKGgGR0BtVtFc6eXiaAdL9WgIR0CUGFPv8ZUDdX2UKGgGR0BxcK4jKPn0aAdNHwFoCEdAlCnIJZ4fOnV9lChoBkdAcPZAood+5WgHTQIBaAhHQJQqvjaPCEZ1fZQoaAZHQHBLrF85S3toB00mAWgIR0CUKuAdn004dX2UKGgGR0Bw0AQ2/BWQaAdNUwFoCEdAlCsOZG8VYnV9lChoBkdAcMsteD3/P2gHTR0BaAhHQJQs4FmnO0N1fZQoaAZHQHDFKdQO4G5oB00LAWgIR0CULW/4qPOqdX2UKGgGR0ByFyYiPhhqaAdNFAFoCEdAlC39VrAP/nV9lChoBkdAb8j34bjtHGgHTQEBaAhHQJQuEcxTKkl1fZQoaAZHQHAtO6d1+y9oB00OAWgIR0CULk9r433pdX2UKGgGR0BwzYRUWEbpaAdL7mgIR0CULpI7Njb0dX2UKGgGR0Bwq+xFAmiQaAdNBwFoCEdAlC/WvjfelHV9lChoBkdAcdEctoSL62gHS/FoCEdAlDBDsD4gzXV9lChoBkdAckYyvcJtzmgHS/toCEdAlDCpm29cr3V9lChoBkdAbrFVMEidKGgHTTcBaAhHQJQxuHKwIMV1fZQoaAZHQHAD2NWEK3NoB00QAWgIR0CUM0W/8EV4dX2UKGgGR0BuaW9nK4hEaAdL6GgIR0CUM3n003wTdX2UKGgGR0ByoIZYPoV3aAdL62gIR0CUM3yMkyDadX2UKGgGR0BxCfbj94u9aAdNMAFoCEdAlDSIywfQr3V9lChoBkdAc0JhQWN3n2gHTRkBaAhHQJQ01ODaoMt1fZQoaAZHQHGWgpjMFEBoB003AWgIR0CUNck/r0J4dX2UKGgGR0BwFtkoWpIdaAdL/mgIR0CUNeFWGRFJdX2UKGgGR0BxkmyTpxFRaAdNBgFoCEdAlDZ5LIxQBXV9lChoBkdAcmGI91U2k2gHTRIBaAhHQJQ3I0WM0gt1fZQoaAZHQHCMsuez2OBoB0v1aAhHQJQ3fr/sE7p1fZQoaAZHQG+c/ACW/rVoB0v7aAhHQJQ5Euf29L91fZQoaAZHQHL7b4vexfRoB00GAWgIR0CUOVq5byH3dX2UKGgGR0Bw7lIWgvlEaAdNOAFoCEdAlDpxJ2+wknV9lChoBkdAcAuExZdOZmgHTR4BaAhHQJQ7qB19v0h1fZQoaAZHQG8yLhisnzBoB0v9aAhHQJQ76AavRqp1fZQoaAZHQG6EEytV7yBoB00zAWgIR0CUO+I0ZWJadX2UKGgGR0BwwKPkq+ajaAdNFwFoCEdAlDygUtZmqnV9lChoBkdAcLsXMyJsPGgHTRYBaAhHQJQ9P8Q7LdN1fZQoaAZHQG+dqNp/PPdoB00TAWgIR0CUPkv9LpRodX2UKGgGR0Bw6dkvsZ5zaAdNMAFoCEdAlD6U+TvAoHV9lChoBkdAcWSMb3oLX2gHTRoBaAhHQJRAKBlMAWB1fZQoaAZHQHFxqEi+tbNoB00dAWgIR0CUQIqvvBrOdX2UKGgGR0Bx9y57PY4AaAdNBAFoCEdAlEDybH6uXHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 392, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV9wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvaG9tZS92bXVzZXIyL21pbmljb25kYTMvZW52cy9kZWVwX3JsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvaG9tZS92bXVzZXIyL21pbmljb25kYTMvZW52cy9kZWVwX3JsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvaG9tZS92bXVzZXIyL21pbmljb25kYTMvZW52cy9kZWVwX3JsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvaG9tZS92bXVzZXIyL21pbmljb25kYTMvZW52cy9kZWVwX3JsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.15.0-72-generic-x86_64-with-glibc2.31 # 79~20.04.1-Ubuntu SMP Thu Apr 20 22:12:07 UTC 2023", "Python": "3.9.16", "Stable-Baselines3": "2.0.0a5", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.21.2", "Cloudpickle": "1.6.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.21.0"}}
|
ppo-LunarLander-v2-10env-1E6step.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95e15fac0d3e71d30aaf1a4959f4f81a858ec906f1ab1f1b0977d63a40b574b5
|
3 |
+
size 146124
|
ppo-LunarLander-v2-10env-1E6step/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2-10env-1E6step/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7faae4609940>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faae46099d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faae4609a60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faae4609af0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7faae4609b80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7faae4609c10>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7faae4609ca0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faae4609d30>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7faae4609dc0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faae4609e50>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faae4609ee0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7faae4609f70>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7faae460a8c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1003520,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1685043326318361206,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": null,
|
33 |
+
"_last_episode_starts": {
|
34 |
+
":type:": "<class 'numpy.ndarray'>",
|
35 |
+
":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYKAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwqFlIwBQ5R0lFKULg=="
|
36 |
+
},
|
37 |
+
"_last_original_obs": null,
|
38 |
+
"_episode_num": 0,
|
39 |
+
"use_sde": false,
|
40 |
+
"sde_sample_freq": -1,
|
41 |
+
"_current_progress_remaining": -0.0035199999999999676,
|
42 |
+
"_stats_window_size": 100,
|
43 |
+
"ep_info_buffer": {
|
44 |
+
":type:": "<class 'collections.deque'>",
|
45 |
+
":serialized:": "gAWVLwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG6n55Rjz7OMAWyUTUYBjAF0lEdAk9/HXNC7b3V9lChoBkdAbhoilBQem2gHTQcBaAhHQJPgEfPomol1fZQoaAZHQHFNgJHAh0RoB00ZAWgIR0CT4GFUhmoSdX2UKGgGR0By2+94/u9faAdNIwFoCEdAk+DxUBGQS3V9lChoBkdAboaAT7EYO2gHTUcBaAhHQJPhwNqgyuZ1fZQoaAZHQHEvLgKnei1oB0v1aAhHQJPiFTIeYD11fZQoaAZHQHLsWDUVi4JoB00fAWgIR0CT4mYeT3ZgdX2UKGgGR0BJb1y/9Hc2aAdLwWgIR0CT4qWSEDhcdX2UKGgGR0BzJFT5wfhdaAdNAwFoCEdAk+P2HYYixHV9lChoBkdAUZizv7WNFWgHS71oCEdAk+Rn3UQTVXV9lChoBkdAczigDRtxdmgHTQABaAhHQJPk3bWVeKN1fZQoaAZHQHK5JQxesxRoB008AWgIR0CT5y8VYZEVdX2UKGgGR0Ai7uQ6p5u7aAdLyWgIR0CT5zp/wy6+dX2UKGgGR0ByBwlNUOuraAdNKAFoCEdAk+dUfkmx+3V9lChoBkdAcZlyzXz19WgHTSEBaAhHQJPnyTY/Vy51fZQoaAZHQG1RbPhQ3xZoB00UAWgIR0CT6Ert3OfNdX2UKGgGR0BxYgqqfe1saAdNCAFoCEdAk+hlNUOuq3V9lChoBkdAcKBymhufmWgHTRoBaAhHQJPpXb5/LDB1fZQoaAZHQHJ2G0Re1KJoB00YAWgIR0CT6oAEdNnHdX2UKGgGR0By+cSzw+dLaAdL/GgIR0CT6sLowEhadX2UKGgGR0BxkTBfrrxBaAdNMwFoCEdAk+uHhS9/SnV9lChoBkdAcYEq1PWQOmgHTQMBaAhHQJPtaTB68g91fZQoaAZHQHFkUxEfDDVoB00HAWgIR0CT7WuVopQUdX2UKGgGR0ByCGbiIcioaAdNBAFoCEdAk+3m+PBBRnV9lChoBkdAcXSb349HMGgHTSoBaAhHQJPuNyDIzWR1fZQoaAZHQHHrGq94/u9oB00RAWgIR0CT7qxYaHbidX2UKGgGR0BuWVR1oxpMaAdNKAFoCEdAk/78xXXAdnV9lChoBkdAbv1/kNnXd2gHTSYBaAhHQJQALk4m1IB1fZQoaAZHQG+nv2oNutRoB00FAWgIR0CUAJSh8IAwdX2UKGgGR0BtJU5fdAPeaAdL9mgIR0CUAVYjjaPCdX2UKGgGR0Bs24yfthNNaAdNNgFoCEdAlAIvwd8zAXV9lChoBkdASO93GGVRk2gHS+VoCEdAlALXVoYek3V9lChoBkdAcdcV8CxNZmgHTScBaAhHQJQEtGOMl1N1fZQoaAZHQG28BPCVKPJoB00cAWgIR0CUBWaJQ+EAdX2UKGgGR0BvTETQE6kqaAdNCAFoCEdAlAVv/WDpT3V9lChoBkdAcKPZDzAerGgHTTEBaAhHQJQFnHNorWl1fZQoaAZHQHEjc3IdU85oB00eAWgIR0CUBrVfNRm9dX2UKGgGR0BwAj8vVVghaAdNDgFoCEdAlAfqSs8xK3V9lChoBkdAcTpxW1c+q2gHTTABaAhHQJQIV0nw5Np1fZQoaAZHQHGafGdZq21oB00WAWgIR0CUCN+zt1IRdX2UKGgGR0Bwz9tZV4oraAdL+GgIR0CUCOFOfukUdX2UKGgGR0BxRRv0h/y5aAdNGgFoCEdAlAooEOiFkHV9lChoBkdAbag4NI9TxWgHTQwBaAhHQJQLi49X9zh1fZQoaAZHQHJEWqxTsIFoB00MAWgIR0CUDCfI0ZWJdX2UKGgGR0Bwp0yxiXpoaAdNFgFoCEdAlAySdWhh6XV9lChoBkdAcpzbz9S/CmgHTSEBaAhHQJQMrENvwVl1fZQoaAZHQHKjtKZlWfdoB00CAWgIR0CUDRmeUY8/dX2UKGgGR0BwQnjsD4gzaAdNEAFoCEdAlA8j0QK8c3V9lChoBkdAcMrDvE0iyWgHTSQBaAhHQJQPPqFAVwh1fZQoaAZHQHJ+50bLlmxoB00WAWgIR0CUD9f0VafSdX2UKGgGR0Bx1fdKujh2aAdNGQFoCEdAlA/rSmZVn3V9lChoBkdAcSOISDh99mgHTRUBaAhHQJQRIQL/jsF1fZQoaAZHQHNPaLS/j81oB0v3aAhHQJQSN68g6lt1fZQoaAZHQHHDW0Re1KJoB0vpaAhHQJQSR//echF1fZQoaAZHQHHr1d9lVcVoB00WAWgIR0CUEmjTrmhedX2UKGgGR0BxxzW4EwFlaAdNBwFoCEdAlBL/KdQO4HV9lChoBkdAcNN0wrUb1mgHTRMBaAhHQJQTqQmu1Wt1fZQoaAZHQHCsfTw2ETRoB00IAWgIR0CUFVlZowmFdX2UKGgGR0BwaI3uNPxhaAdNNAFoCEdAlBaA/1QIlnV9lChoBkdAbO0JwbVBlmgHTSIBaAhHQJQW3w9aEBd1fZQoaAZHQHM2gyEcsDpoB0v+aAhHQJQXXVFx4pt1fZQoaAZHQHC4xPO6d2BoB007AWgIR0CUF2t1ZDArdX2UKGgGR0BtVtFc6eXiaAdL9WgIR0CUGFPv8ZUDdX2UKGgGR0BxcK4jKPn0aAdNHwFoCEdAlCnIJZ4fOnV9lChoBkdAcPZAood+5WgHTQIBaAhHQJQqvjaPCEZ1fZQoaAZHQHBLrF85S3toB00mAWgIR0CUKuAdn004dX2UKGgGR0Bw0AQ2/BWQaAdNUwFoCEdAlCsOZG8VYnV9lChoBkdAcMsteD3/P2gHTR0BaAhHQJQs4FmnO0N1fZQoaAZHQHDFKdQO4G5oB00LAWgIR0CULW/4qPOqdX2UKGgGR0ByFyYiPhhqaAdNFAFoCEdAlC39VrAP/nV9lChoBkdAb8j34bjtHGgHTQEBaAhHQJQuEcxTKkl1fZQoaAZHQHAtO6d1+y9oB00OAWgIR0CULk9r433pdX2UKGgGR0BwzYRUWEbpaAdL7mgIR0CULpI7Njb0dX2UKGgGR0Bwq+xFAmiQaAdNBwFoCEdAlC/WvjfelHV9lChoBkdAcdEctoSL62gHS/FoCEdAlDBDsD4gzXV9lChoBkdAckYyvcJtzmgHS/toCEdAlDCpm29cr3V9lChoBkdAbrFVMEidKGgHTTcBaAhHQJQxuHKwIMV1fZQoaAZHQHAD2NWEK3NoB00QAWgIR0CUM0W/8EV4dX2UKGgGR0BuaW9nK4hEaAdL6GgIR0CUM3n003wTdX2UKGgGR0ByoIZYPoV3aAdL62gIR0CUM3yMkyDadX2UKGgGR0BxCfbj94u9aAdNMAFoCEdAlDSIywfQr3V9lChoBkdAc0JhQWN3n2gHTRkBaAhHQJQ01ODaoMt1fZQoaAZHQHGWgpjMFEBoB003AWgIR0CUNck/r0J4dX2UKGgGR0BwFtkoWpIdaAdL/mgIR0CUNeFWGRFJdX2UKGgGR0BxkmyTpxFRaAdNBgFoCEdAlDZ5LIxQBXV9lChoBkdAcmGI91U2k2gHTRIBaAhHQJQ3I0WM0gt1fZQoaAZHQHCMsuez2OBoB0v1aAhHQJQ3fr/sE7p1fZQoaAZHQG+c/ACW/rVoB0v7aAhHQJQ5Euf29L91fZQoaAZHQHL7b4vexfRoB00GAWgIR0CUOVq5byH3dX2UKGgGR0Bw7lIWgvlEaAdNOAFoCEdAlDpxJ2+wknV9lChoBkdAcAuExZdOZmgHTR4BaAhHQJQ7qB19v0h1fZQoaAZHQG8yLhisnzBoB0v9aAhHQJQ76AavRqp1fZQoaAZHQG6EEytV7yBoB00zAWgIR0CUO+I0ZWJadX2UKGgGR0BwwKPkq+ajaAdNFwFoCEdAlDygUtZmqnV9lChoBkdAcLsXMyJsPGgHTRYBaAhHQJQ9P8Q7LdN1fZQoaAZHQG+dqNp/PPdoB00TAWgIR0CUPkv9LpRodX2UKGgGR0Bw6dkvsZ5zaAdNMAFoCEdAlD6U+TvAoHV9lChoBkdAcWSMb3oLX2gHTRoBaAhHQJRAKBlMAWB1fZQoaAZHQHFxqEi+tbNoB00dAWgIR0CUQIqvvBrOdX2UKGgGR0Bx9y57PY4AaAdNBAFoCEdAlEDybH6uXHVlLg=="
|
46 |
+
},
|
47 |
+
"ep_success_buffer": {
|
48 |
+
":type:": "<class 'collections.deque'>",
|
49 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
50 |
+
},
|
51 |
+
"_n_updates": 392,
|
52 |
+
"observation_space": {
|
53 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
54 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
55 |
+
"dtype": "float32",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_shape": [
|
59 |
+
8
|
60 |
+
],
|
61 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
62 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
63 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
64 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
65 |
+
"_np_random": null
|
66 |
+
},
|
67 |
+
"action_space": {
|
68 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
69 |
+
":serialized:": "gAWV9wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
70 |
+
"n": "4",
|
71 |
+
"start": "0",
|
72 |
+
"_shape": [],
|
73 |
+
"dtype": "int64",
|
74 |
+
"_np_random": null
|
75 |
+
},
|
76 |
+
"n_envs": 1,
|
77 |
+
"n_steps": 1024,
|
78 |
+
"gamma": 0.999,
|
79 |
+
"gae_lambda": 0.98,
|
80 |
+
"ent_coef": 0.01,
|
81 |
+
"vf_coef": 0.5,
|
82 |
+
"max_grad_norm": 0.5,
|
83 |
+
"batch_size": 64,
|
84 |
+
"n_epochs": 4,
|
85 |
+
"clip_range": {
|
86 |
+
":type:": "<class 'function'>",
|
87 |
+
":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvaG9tZS92bXVzZXIyL21pbmljb25kYTMvZW52cy9kZWVwX3JsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvaG9tZS92bXVzZXIyL21pbmljb25kYTMvZW52cy9kZWVwX3JsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
88 |
+
},
|
89 |
+
"clip_range_vf": null,
|
90 |
+
"normalize_advantage": true,
|
91 |
+
"target_kl": null,
|
92 |
+
"lr_schedule": {
|
93 |
+
":type:": "<class 'function'>",
|
94 |
+
":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvaG9tZS92bXVzZXIyL21pbmljb25kYTMvZW52cy9kZWVwX3JsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvaG9tZS92bXVzZXIyL21pbmljb25kYTMvZW52cy9kZWVwX3JsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
95 |
+
}
|
96 |
+
}
|
ppo-LunarLander-v2-10env-1E6step/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c6095988cd5264bae5d56a385a3bdd54cd4593b34003e64cd3a92a1c78f612e
|
3 |
+
size 88057
|
ppo-LunarLander-v2-10env-1E6step/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11315e1ac4acf90ac2aa30ebbf06a66556a77a6a93ad7701735e3d096ee380d7
|
3 |
+
size 43329
|
ppo-LunarLander-v2-10env-1E6step/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-10env-1E6step/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.0-72-generic-x86_64-with-glibc2.31 # 79~20.04.1-Ubuntu SMP Thu Apr 20 22:12:07 UTC 2023
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 1.11.0+cu102
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.2
|
7 |
+
- Cloudpickle: 1.6.0
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.21.0
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 262.0150298570597, "std_reward": 14.886684924184538, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-25T18:46:48.180079"}
|