dyingc commited on
Commit
9191994
·
1 Parent(s): a67757a

This is another Reinforsement Learning model I made via HuggingFace's course

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
BipedalWalker-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af0d5564e04dd08b80ee6faf999f75f1291e78dbcdb315d1809f70b8b0831163
3
+ size 181607
BipedalWalker-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
BipedalWalker-v3/data ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4418a31310>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4418a313a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4418a31430>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4418a314c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f4418a31550>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f4418a315e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4418a31670>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4418a31700>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f4418a31790>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4418a31820>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4418a318b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4418a31940>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f4418a28d80>"
21
+ },
22
+ "verbose": false,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 24
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.box.Box'>",
39
+ ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
40
+ "dtype": "float32",
41
+ "_shape": [
42
+ 4
43
+ ],
44
+ "low": "[-1. -1. -1. -1.]",
45
+ "high": "[1. 1. 1. 1.]",
46
+ "bounded_below": "[ True True True True]",
47
+ "bounded_above": "[ True True True True]",
48
+ "_np_random": null
49
+ },
50
+ "n_envs": 64,
51
+ "num_timesteps": 65536,
52
+ "_total_timesteps": 1000,
53
+ "_num_timesteps_at_start": 0,
54
+ "seed": null,
55
+ "action_noise": null,
56
+ "start_time": 1677206739598268315,
57
+ "learning_rate": 0.0001,
58
+ "tensorboard_log": null,
59
+ "lr_schedule": {
60
+ ":type:": "<class 'function'>",
61
+ ":serialized:": "gAWV5QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWS9ob21lL3JsL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxZL2hvbWUvcmwvbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
62
+ },
63
+ "_last_obs": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdRgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAGAAAAAAAAHI4oz1cNsC7N1SaPO5cAbz4elK/kKEiO5DA1b4nNYC/AACAP0OakD8AFMy40lxvP0CRjroAAAAAD5hfPhsiYj4fDGo+fVB4PtZ0hz4Hy5g+x9mzPnuv4D5mQxo/1S1/P3D5xz7KcIY9zo+SvLpEZr0fuVG/AAAAMzCbyL31/3+/AAAAAJDSgT8CAIC/gNvpvhQ+Mj8AAIA/N9SOPnVzkD6ngZU+vZ6ePj0OrT5bNMM+zMXlPraGDz9E/0M/AACAPwOmzj4NKw88Kx0mvb1c9TsCp4M/YDP4PR5Xwj4BAIC/AAAAABGNQ7/UsDc/tEbyvklwnD8AAIA/0zGJPrDAij7Um48+4FyYPpk6pj4Kgbs+Y7XcPkfdCT/qTj0/AACAP0nv9z227HA83GatvMCsvDxbElS/4CQyO1QyNT6XYIC9AACAP8n3hj/udlW/7MBwP9P9fz8AAIA/y3lnPsEaaj4wTHI+p4iAPjU7jD7ZLZ4+xTC6PhGb6D7LaR8/AACAP3VgFz6YdYY94J8rPK/7ijqyFog/1Y9kv3zZdj///38/AAAAAEmaO78hyA6/QPb7vv//f78AAIA/PP+CPhR8hD4QH4k+4HqRPj24nj6lCLM+AL3SPvGiAz+owTQ/AACAP27B9j2Mvfa8GSOOPZT3rrzo8o8/AIxWu2qEej/sIVY/AACAP5jOVb8AsN84IFPjvYU5gD8AAIA/C350PthEdz467H8++8KHPu8dlD7xEqc+G6nEPpWv9T5+rig/AACAP0kiqD1tLIU7HA/ePIo1wzuVvFW/AABnNWDUA7/5/38/AAAAAKUskD8AACiz3qVqP1UVZrYAAIA/b69gPqc8Yz6PMGs+wIZ5PhYeiD7wiZk+f7q0PjnI4T4lBBs/Typ5P5K5mz2sJCg9X4z5PLp6V71E30i/9v9/vxA+lb79/3+/AAAAAKhEkT8AAAAASlZvP6uqqrMAAAAAzw5xPqDLcz7jU3w+w9qFPkgJkj4euqQ+4uXBPg888j7iTyY/j0l9P/L4xD1taCw9pFV9O228lrwcEUS/2/ilvjChBr4AAIC/AAAAAE96iT+SbEC/iPRwPwAAgD8AAIA//69vPtRocj6s5Ho+9heFPsE0kT5jyqM+tMvAPojb8D7ZXSU/AACAP0K4PT98VuW8SX0SPVrxSDyrRJE/AAAAM5xjIr8AAAAAAAAAAIS8Vb8AAAAAHHb1vtu1+z0AAAAAqG2QPowRkj48Lpc+cmWgPlT+rj7xY8U+eljoPiYiET8rSkc/AACAPzEWbD6zxye8BvsSvU0KYbsKuYs/DwCAP9ApUT///3+/AAAAAIqgVb8AAACz2Ir+vvX/fz8AAAAAsWWAPvragT5nZoY+wJeOPtmRmz4Me68+U47OPicGAT/+pjc/AACAP+Sfpz9wBwS7iwbDvHfkAz3hMU6/TG2LPRj9HL+g8R09AACAP7NvRL4JZbe/iJ4QvkOVlz8AAIA/6lyePlEpoD5FxKU+Gd+vPoXgvz5Rb9g+N8P+PtIiHz90hFo/AACAP1GOuT5kECm9TLP7O3+9jrwJyI8/nLtEPxDrGT/4/X8/AAAAADe0T78AACI20EKZvq0UgD8AAIA/0BSIPnCgiT5+cY4+WiCXPkXhpD6D+7k+4uraPuC+CD+kxTs/AACAP1SbRz76U7c6Bx8dPd9URLwq4ow/AABQMsgFXj/3/3+/AAAAAImCR7/L5hE+SOYQv/z/f78AAAAAdj+BPji3gj5bSoc+mImPPrWZnD6spLA+p+zPPvzgAT/LVzI/AACAP5KBpD1qOJS7ce+8O5+YRDsQ2VW/XBxbvGjhgz0JwoA/AACAP1Bmjz8AfvI5ZGptP3UnzDwAAAAATZtgPkooYz58G2s+ZHB5PuQRiD4ufJk+Tqq0Pv2z4T7yFBs/+lZ5P5okwz7UXkE86t+hvGn6+7wUvVW/AABgMyy3Hr/8/3+/AAAAALYVQz8DAIC/fjRdP6ebgD8AAAAAKmOCPjzegz6ye4g+jM2QPiT7nT5YM7I+7cHRPhwGAz9N6jM/AACAP106JD72++g8OmyEPFOPUj2Pgk+/APPyOjCdYz0ow38/AACAP2NcjT8AsHu4wrEyP2s1w74AAIA/HdNwPkGPcz5mFXw+nbmFPh7lkT5TkaQ+3rXBPhIA8j6zJiY/AACAPztP3D1OEqs8JItLuxKv4zzKvFW/AAA9thiVyr4WAIA/AAAAAKVEkT8AAOAzovZVP4Uufr4AAIA/ke5iPlGCZT6Uim0+eAV8PoJ6iT70Eps+HYm2PikK5D7xkBw/JLZ4PxITzz2ieQS9XGrRO668ubym5lO/bQMyPsA1U739/38/AAAAAJo4iz/cWXg/NFFXPwAAgL8AAAAAR/l0PnvBdz6cNoA+aQeIPpdolD4nZ6c+PAzFPmsr9j5MHyg/AACAP+DfsT63X/a84yKdPIUIsrwgOYo/pEYNP0wfSD8lAIA/AAAAAPUtS7/wkq68/D7PvkdcPj8AAIA/Tt2GPmRliD5rK40+aMaVPtZnoz7GUbg+wPXYPtmFBz/OFzo/AACAPyhjQT580189kJKWvcbCgj1UY1W/AECfNxBP6L6dAIC/AACAP1qijj8AAFi1qfQhP9UDKL8AAIA/hfNsPmakbz5zB3g+AJODPmWMjz6366E+RJi+PqMb7j6SeiM/AACAP+VeYT2DbZO9QnTBOztOfb18cUq/NZXnPrhBxT3//38/AAAAADN6mT/8/38/EFZvP6uqKrQAAAAAO9hiPrprZT4zc20+qux7PvpsiT6xA5s+Jne2Prfz4z6JgRw/AACAPyy4ij6Ichc7a/DkPO1Orzw5A1a/YOd2upgaZ76jDYA/AACAPwwCjj8AgPQ3CBW+PmvQqb0AAIA/Zbx4PomPez6vLoI+Nh6KPg+wlj5N+ak+7hLIPj3z+T7+mys/AACAP3s2XD56FDU9xSgZvSg4e70L+YU/wH48vApWbz8AAAAAAAAAAIb5UL/8/3+/SFyzvmlTh74AAIA/A+KBPp5bgz6B9Ic+Hj6QPqhenT7VgrE+J/LQPlSEAj8XODM/AACAP8MB1T2Wsy+9aaioPX/0gbzHuY8/AMCHuHIbfD9T9AQ/AACAP8/HVb8AAPc2YL/fPXsENz4AAIA/2bh0PlGAdz7kFIA+o+OHPo9BlD4gO6c+aNjEPq3q9T4Q1yg/AACAPwnNnD7G6rg8vFJ2vHY0trnjD2E/g2wWvvRVbz/ljkY6AACAP4VET78AwNy3VHgov5QHgL8AAIA/peuEPhVuhj5+Ios+uZ2TPtwMoT6fqbU+J9XVPsKRBT8caTc/AACAP+5qcj706lG73Zf4vNM8yjzcC4U/pHBLvaALSj8jTBQ/AACAP1kbUL8AAAC1eFgDv5Pzfz8AAAAArwuCPsOFgz4gIIg+ZWyQPiaRnT7Ju7E+MTXRPjSuAj+XcTM/AACAP63oKz40NLM7Oq9avRwPfry53U6/ncCWvqCCH79j1XK+AACAPy4/jj8AAAAAYPVQP/v/f78AAAAAu7ZtPtNpcD7J03g+Zv+DPqgCkD4dcaI+STW/Ps3f7j5BASQ/AACAP14CfD7Skae9xbEwOn1wEj2n6Tm/YpYhPyAf8b31/38/AAAAAMgMkT83gyc/SsD0PlWYKDwAAAAAodyCPhRZhD7X+og+cVSRPlCOnj5a2bI+VIXSPiuAAz/okTQ/AACAP6cwwT47bzc9czzOvdvKJT2El1C/AChsOihuL75Jxr69AACAPwVoNj+I5be+oFZvP6sKszcAAIA/c3mDPq73hD79nok+mgKSPlJMnz6tr7M+nIHTPsEdBD9LajU/AACAPw4xlD6J3788/CT0uwMRLz3CGpA/wEUeO3qN9D4JdSW9AACAPwv+Vb8A0KO4aK/AvrSQfz8AAIA/NzWCPsSvgz6ZS4g+hZqQPnjDnT6L9LE+AXjRPvDXAj/mqjM/AACAP2gUDD5vMdS6mghCPAaQHz3PnUi//5a3vRgaiL58cUa9AACAPwGdej9s9Ee/gy2KP+h02j8AAIA/k/psPoirbz7VDng+65aDPquQjz6J8KE+8J2+PjGY7j4YACI/AACAPyGCVj6kLBu9Pt1SPYp6Dj2ch40/gup/vjyKPD8AAIA/AAAAAMFFTr86Gza/yEuJvgMAgD8AAIA/56WFPnQqhz515Ys+k2yUPonuoT4uqLY+ygDXPuxMBj8eajg/AACAP8ad8T7donc912w+veY5grywDo0/PZrAvii8qb7//3+/AAAAAJ+OUb8BAIC/eKC7vlj/3r4AAIA//r2MPitXjj50UpM+c02cPvaGqj48WsA+YWriPuFtDT8Z1UU/AACAP2BvOD1Z5h+9NXaiPGn8gbx6Qku/7mIZPtIsjT4W5pU9AACAP2PRlT91BYA/+utVP7DQf78AAIA/ywJsPvCwbj54C3c+VQ2DPo/6jj43R6E+ota9Prwp7T591CI/AACAP6n8DT2yauU8uPjjPBGYorypIDa///9/v3CTtL4AAIA/AAAAAELtjj8AAAAADhlpP8H8T74AAIA/zWd3PhI3ej5tfIE+FmGJPrnhlT6OEKk++ADHPvuc+D4CsSo/AACAP8xrJT7NpnY8UdoZPZ1tTbwL90G/j6HmvZCi5760smu/AACAPzRqgT9CVlW/BlZvP6uqKrMAAAAAw9F0PoSZdz7uIYA+ePGHPqdQlD4mTKc+c+zEPrYD9j7/Eiw/AACAP/kJhD0pxie8TWdIPOBeJT3HvFW/gJ1WuqBJhTxiAoA/AAAAADXfjT8AgAA4AFZvP6BFkTsAAAAAyWxqPlIWbT56YnU+4iuCPpgEjj7FMaA+D5C8Pr6R6z6N5CI/Xrx8P249Kj7vlQu8iAtgPYAPeLz/bo4/DGSOvoJObz8AAAAAAAAAAFvMT7/+/3+/ADL2vEA5wz8AAAAAgLWFPjo6hz7J9Ys+5n2UPm8Boj6AvbY+4hnXPplcBj+jfzg/AACAP4wA+z5GfYI8WijXu/OCiDxuz0S/utYTPkiJIr8AAAAAAAAAAMFrTT86Sjy/QCD/PDcPJz8AAIA/M2qWPn8fmD5tcp0+bQunPjQ/tj54ks0+6/nxPiwmFz8zgUk/AACAP7NGIj5dp5W8n7JIvN2zK73who8/JFULPwIibD8AAAAAAAAAAK53UL8AAAAAAJuUvTlOyz4AAAAAL6GBPg0agz6lsIc+H/aPPhwQnT47KrE+3YnQPi9DAj+j3jI/AACAPwrE1T1xSQ89Xm2DvUSPkL2oRJE/rq4qvqgUXD8AAIA/AAAAAFAGF7+bRnu+KosJv/v/f78AAAAA0kaNPo3hjj6u4ZM+aOWcPr4sqz49FcE+gEbjPmD3DT/a8EI/AACAPwbi/j4klAi9siMAPTpsYr2NvFW/AAAAADx4y74kcw6/AAAAAGcjfD+yyYK+MJogvwAAAAAAAAAAkVyIPgLpiT6ZvI4+CnCXPjU4pT6UXbo+UF7bPvoGCT+mKDw/AACAPzOXNb+q3gC+WQ2aPtofTLy9OSc/PgDYPtjqE7/7/38/AAAAAA+oQL4Px6M/RlMTP/3/f78AAAAAAI+PPl0wkT4rRZY+LG6fPo3wrT6jM8Q+SfLmPmhCED/vFkY/AACAPzUCmj3qG0O6wL6HvP8Q2Ly7DlW/AACQMVBHGb8BAIC/AAAAAP1vjz8pSAm90ixmP1stHj8AAIA/QetwPquncz6rLnw+BceFPr7zkT7SoaQ+ScnBPlQY8j5bNyY/AACAPyrZtz3OTSq9G2QkPDRFrjyjcjm/ZiuwPpBRZD1DzmS+AACAP6BEkT8AgBu4RCBbPwAeVD8AAAAAqz9zPtsCdj73nn4+MhKHPg5dkz5hOaY+BanDPqdv9D7W0ic/AACAP5c8rj4CVRU6+943vTZlrjxfAoo/hhAiv5J29D45AYC/AAAAADO/Vb8A3FG2WJ+avmiCDz8AAIA/B9GFPhFWhz6ZEow+eJyUPskioj4f47Y+KkbXPkJ4Bj+fpTg/AACAP34LDz7C25c8TblhPMPDnzyvU1a/4Eh9u5AsVj3wtX6/AAAAAOVojT8AoJ04jNBKPykUWL4AAAAAPZdoPnA7az77dnM+JyeBPiPojD7o8J4+Xxa7Pui56T5reCA/AACAP3xhaD80QFA8QqK4vXvvMD0pWmA/OFGAP7ogAr/z+n+/AAAAAEcnVb++7F898p4iv8DmSDwAAAAAJ+iNPreEjz6OipQ+k5idPjjwqz678cE+CkrkPn+ZDj94z0M/AACAP7K5sz4u/c68HMW3PPsdR7kssoo/zMk8PloftD6E2Om8AACAP9rmVb8AADe2+PZjvnXlfz8AAIA/DHKFPgL2hj4ur4s+/DKUPrSvoT5PYbY+Xq3WPtEYBj+QIjg/AACAP8FGeD4R/sO8VN1BvNYv2ru3how/R2NcP/HJJD8AAIC/AACAP92PVL/MF6E9APYJveiGQT0AAIA/2bSBPvEtgz47xYc+9guQPu8nnT4bRbE+f6nQPvFWAj/F+TI/AACAPyJQvT47ykg9Jj8Hu/f7NLwvtlG/AXlev3z6ob5zE30/AACAP163Wz+5Im6/TaInPwAAgD8AAIA/hPGBPkxrgz68BIg+Vk+QPnFxnT4FmLE+GAvRPuiTAj98TTM/AACAP2Cepj57f/A7S0cAvRUgBDyZiVO/oMyFulZzG78F2y89AACAP2TJgD9VHga+WrfrPuDK5z0AAIA/kS98PrwMfz7q/IM+ngiMPhnHmD7RVKw+UtnKPrlq/T57cS0/AACAPwEFcz4SU8U8Eb1uvNI94bwVWlW/Vp0Av5J/C7/Y9WI/AACAPxM6kT8AAAAAIqZeP/v/f78AAAAAC+pxPlqpdD5fOX0+f1SGPhiOkj7uT6U+OpbCPl0Y8z4j5yY/AACAPwC0VD4TcxC9y0qcPB8pqTyUi4s/oQkKvmwKUT8BAIA/AACAP99fT7/nqKE+CCm+vkSthr4AAIA/syGAPjaWgT48H4Y+PUyOPng/mz4fHq8+8SDOPtTBAD98zTA/AACAPyihqT5rrqE7zog2vG3eTDxFElo/ripWvQpWbz8AgE62AACAP6VJUr8AAPCzmEQav7pCqD4AAIA/VCeFPnGqhj73YIs+AuCTPixVoT4x+7U+KzXWPrvNBT92uzc/AACAPxyxlT3660O6P1LWvF+8jDxRJDy/cXRSP4jmCD4AAIC/AACAPyQBjj8AAAAAWg9lPwS7B70AAAAAU+1uPvKjcT7mGHo+3auEPtG+kD5bRaM+Hi/APn4M7z7JvSE/AACAPzB+2z15qAK9jzQOPBYEiDv9l0S/JFCAvkDvwr4BAIA/AACAPx76jD8AAAAAFEpmP+EFMD8AAAAApZRvPitNcj4LyHo+xgiFPi8kkT6yt6M+tLXAPgzA8D76SiU/AACAPxd5bj6Za5y8rRp5vU5/S7xPl24/Qs52v2xubD/FANM/AACAP/rgLb/8PDk/pNEAv/v/fz8AAAAAgveJPp2Iiz7BapA+ajiZPh4qpz43j7w+aPPdPu2jCj8dG0A/AACAP7eKVz4vs2G9D4SiPc1wx7yBLBq/55IuPmggbL77/3+/AAAAAGWgjD8OKE6+HFZvP6uqKrMAAAAApNuJPm5siz6VTZA+eBmZPloIpz4habw+k8bdPuyHCj88OT4/AACAP2jAjz0jGu65Kod0Ow0osjs2wVW/gKlOOnQijL4P9H8/AAAAAJ4/kT9AuQm4rPRuPxX4tbsAAIA//81dPtdSYD6lLGg+yFN2PlZfhj4Ckpc+VGmyPi/j3j5eBxk/AACAP8rO7z37dmY9NpknvXKkxr2aEV2/+/9/vwAwfDuJbKo/AAAAADc7jz9vki++vu1tPwAAgD8AAIA/Q2lpPtkPbD7SUnQ+xpuBPl9njT5tgJ8+Tr+7PvSM6j5SCSE/AACAP8M9/D7CayC9sLVqvfec97xfnlo/TxiNPngtsz6tXrk9AACAP9ZWE78Fvzo/UIkiv6uqKjUAAAAAWXWSPiQflD45Tpk+mKaiPgF0sT40Ksg+hJzrPmEsEz9EF0o/AACAP9URaz5JfZ0722cbPJvHujubIYE/pQQJv0ThbD/Y/38/AAAAAJC8Vb8AAFw0kokiv1UrSDkAAIA/a1N+PmebgD6lG4U+1DiNPv4Smj4xy60+/pHMPj+R/z5Ldy8/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLQEsYhpSMAUOUdJRSlC4="
66
+ },
67
+ "_last_episode_starts": {
68
+ ":type:": "<class 'numpy.ndarray'>",
69
+ ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="
70
+ },
71
+ "_last_original_obs": null,
72
+ "_episode_num": 0,
73
+ "use_sde": false,
74
+ "sde_sample_freq": -1,
75
+ "_current_progress_remaining": -64.536,
76
+ "ep_info_buffer": {
77
+ ":type:": "<class 'collections.deque'>",
78
+ ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKm9HOC1hXMCUhpRSlIwBbJRLRIwBdJRHQAE5Ukv9LpR1fZQoaAZoCWgPQwiN7ErLSEpbwJSGlFKUaBVLR2gWR0ABW32EkB0ZdX2UKGgGaAloD0MISu6wiczwXMCUhpRSlGgVS0hoFkc//+6Ymb9ZR3V9lChoBmgJaA9DCDVgkPRpU1nAlIaUUpRoFUtIaBZHQAed0aIeo1l1fZQoaAZoCWgPQwioHf6arPJZwJSGlFKUaBVLSWgWR0ACS59Vmz0IdX2UKGgGaAloD0MICOQSRx4cWsCUhpRSlGgVS0loFkc//ToLXtjTa3V9lChoBmgJaA9DCASQ2sTJv1jAlIaUUpRoFUtJaBZHP/+ahYeT3Zh1fZQoaAZoCWgPQwi70FynkXNbwJSGlFKUaBVLS2gWR0ACE63iJfpmdX2UKGgGaAloD0MIsYf2sYL/XcCUhpRSlGgVS0xoFkdAALa6jFhod3V9lChoBmgJaA9DCDLGh9nLV1rAlIaUUpRoFUtOaBZHQA9NmlImPYF1fZQoaAZoCWgPQwjFU480uL5YwJSGlFKUaBVLT2gWR0ALH7SApazNdX2UKGgGaAloD0MInPwWnSwUX8CUhpRSlGgVS1RoFkdAAA3b212JSHV9lChoBmgJaA9DCEzHnGfsd1jAlIaUUpRoFUtXaBZHP/+iBXjlxOt1fZQoaAZoCWgPQwgvxOqPMMNewJSGlFKUaBVLYGgWRz//QpvxYq5LdX2UKGgGaAloD0MIOUVHcvkSWcCUhpRSlGgVS2FoFkdAAkwFkhA4XHV9lChoBmgJaA9DCBy3mJ8bu1rAlIaUUpRoFUswaBZHP/8ljmSyMUB1fZQoaAZoCWgPQwhPPj22Zb5YwJSGlFKUaBVLZGgWR0AAH7xd6cAjdX2UKGgGaAloD0MIiZl9HqPaXcCUhpRSlGgVS2VoFkdAAsju8brC33V9lChoBmgJaA9DCN9sc2N6WVvAlIaUUpRoFUsvaBZHP/9hFVktmL91fZQoaAZoCWgPQwi+EkiJXWFawJSGlFKUaBVLamgWR0AFYnrpqynldX2UKGgGaAloD0MIwjHLngShWsCUhpRSlGgVS2toFkdACA/nnuAqeHV9lChoBmgJaA9DCEq1T8djnVvAlIaUUpRoFUtuaBZHQAKlEqlP8AJ1fZQoaAZoCWgPQwgy6e+l8FhcwJSGlFKUaBVLRGgWR0ADJEH+qBEsdX2UKGgGaAloD0MImsx4W+kGWsCUhpRSlGgVS3BoFkdAB28wHqu8snV9lChoBmgJaA9DCGVx/5HpjVnAlIaUUpRoFUt0aBZHQAy8cENe+mF1fZQoaAZoCWgPQwgX1/hM9jJewJSGlFKUaBVLd2gWR0ACrNSqEOAidX2UKGgGaAloD0MIgEQTKGLXXcCUhpRSlGgVS4NoFkdAAh8sMAmzB3V9lChoBmgJaA9DCLIS86ykj17AlIaUUpRoFUuEaBZHQBNOfI0ZWJd1fZQoaAZoCWgPQwiuKZDZWThcwJSGlFKUaBVLVmgWR0AQ3TkQwsXjdX2UKGgGaAloD0MItYzUeypUW8CUhpRSlGgVS0hoFkdAA7+0gKWszXV9lChoBmgJaA9DCKPlQA+1oFnAlIaUUpRoFUtTaBZHQADSGi5/b0x1fZQoaAZoCWgPQwgraFpiZelZwJSGlFKUaBVLUGgWR0AM4eJYT0xudX2UKGgGaAloD0MI7N/1mbMFYMCUhpRSlGgVS5BoFkdABMW+GoJiRXV9lChoBmgJaA9DCLAdjNgnNVnAlIaUUpRoFUtSaBZHQAQUQ04zabp1fZQoaAZoCWgPQwhSJ6CJsIJZwJSGlFKUaBVLTWgWR0ACugOBlMAWdX2UKGgGaAloD0MI6X+5Fi30WcCUhpRSlGgVS05oFkdABCmVJL/S6XV9lChoBmgJaA9DCOvgYG9iPVvAlIaUUpRoFUsvaBZHQAFct5D7ZWd1fZQoaAZoCWgPQwia7J+nAfxawJSGlFKUaBVLO2gWR0ACN/x2B8QadX2UKGgGaAloD0MITZ8dcF0PXcCUhpRSlGgVS05oFkdAAswJw84ginV9lChoBmgJaA9DCHhEhermT1vAlIaUUpRoFUstaBZHQARCOearmyR1fZQoaAZoCWgPQwjac5maBMNcwJSGlFKUaBVLPWgWR0AHiuW8h9srdX2UKGgGaAloD0MIFcYWghzfWcCUhpRSlGgVSzxoFkdACi83++/QB3V9lChoBmgJaA9DCNXo1QCl+FrAlIaUUpRoFUtYaBZHQA44hEBsANp1fZQoaAZoCWgPQwhVNNb+zmRcwJSGlFKUaBVLOGgWR0AJahWYF7ladX2UKGgGaAloD0MIN4yC4PGDW8CUhpRSlGgVS21oFkdABAi9qUNayXV9lChoBmgJaA9DCB3k9WBSL1rAlIaUUpRoFUtTaBZHQAU7NKRMewN1fZQoaAZoCWgPQwjZCpqWWDtgwJSGlFKUaBVLgmgWR0AGYjOcDr7gdX2UKGgGaAloD0MIem8MAcB6WsCUhpRSlGgVS1xoFkdABftIClrM1XV9lChoBmgJaA9DCGqIKvwZI1rAlIaUUpRoFUuGaBZHQALXVkMCtA91fZQoaAZoCWgPQwjIfhZLkV1dwJSGlFKUaBVLM2gWR0ADEMgEEC/5dX2UKGgGaAloD0MIAYkmUMSEXcCUhpRSlGgVS3BoFkdAA4JokAxSHnV9lChoBmgJaA9DCDONJhdjTVnAlIaUUpRoFUtJaBZHQA9ZPuXu3MJ1fZQoaAZoCWgPQwinlq31RZ9bwJSGlFKUaBVLZ2gWR0AQHU1AJLM+dX2UKGgGaAloD0MIXKrSFtc1WcCUhpRSlGgVS25oFkdABmgZjx0+1XV9lChoBmgJaA9DCI5Yi08BrlrAlIaUUpRoFUs6aBZHQAYuTq0MPSV1fZQoaAZoCWgPQwg+BitOtS5dwJSGlFKUaBVLPWgWR0AE10eU6gdwdX2UKGgGaAloD0MIfm/Tn/0mWsCUhpRSlGgVS09oFkdABtJnQID5kHV9lChoBmgJaA9DCDwUBfpEeFnAlIaUUpRoFUtCaBZHQBA2P91loUV1fZQoaAZoCWgPQwg3iUFg5axZwJSGlFKUaBVLXGgWR0AMW8yvcJt0dX2UKGgGaAloD0MICf8iaMwPXcCUhpRSlGgVS19oFkdABwyDZlFtsXV9lChoBmgJaA9DCDlGskeoDVrAlIaUUpRoFUs9aBZHQAVy1Vo6CDp1fZQoaAZoCWgPQwiRDDm2npBdwJSGlFKUaBVLXmgWR0AIPSx7iQ1adX2UKGgGaAloD0MI6njMQGVaWsCUhpRSlGgVS1ZoFkdACL8gpz90inV9lChoBmgJaA9DCIYeMXpuO1rAlIaUUpRoFUs8aBZHQAhVdPci4ax1fZQoaAZoCWgPQwhZ3eo56SRbwJSGlFKUaBVLUWgWR0AFs/KQq7ROdX2UKGgGaAloD0MIPdf34SCkXMCUhpRSlGgVSzhoFkdAEReRgZ0jknV9lChoBmgJaA9DCH+FzJVB+FvAlIaUUpRoFUvgaBZHQA8065oXbdt1fZQoaAZoCWgPQwjSAUnYtyhfwJSGlFKUaBVLvmgWR0AJeoR7JGONdX2UKGgGaAloD0MIRSv3ArOIXcCUhpRSlGgVS1NoFkdAEXhTOxB3R3V9lChoBmgJaA9DCG7BUl3AwVvAlIaUUpRoFUtGaBZHQA6j0cwQDmt1fZQoaAZoCWgPQwj7PbFOlTZdwJSGlFKUaBVLdWgWR0ARkQoTfzjFdX2UKGgGaAloD0MIcNI0KJpPWsCUhpRSlGgVSzBoFkdAEj0cfeUILXV9lChoBmgJaA9DCH4CKEaWSFnAlIaUUpRoFUtjaBZHQAjsDOkcjqx1fZQoaAZoCWgPQwiAY8+eyytawJSGlFKUaBVLZ2gWR0ASyUmlZX+3dX2UKGgGaAloD0MI73IR34l3XMCUhpRSlGgVS0JoFkdAEHA1ejVQRHV9lChoBmgJaA9DCIC1ateET1nAlIaUUpRoFUtCaBZHQBKwTEit7rt1fZQoaAZoCWgPQwj0T3CxonNdwJSGlFKUaBVLiWgWR0AR3336AOJ+dX2UKGgGaAloD0MIyorh6gDKWcCUhpRSlGgVS4toFkdADhRb8m8dxXV9lChoBmgJaA9DCE29bhEYhFvAlIaUUpRoFUtVaBZHQAvNB4Uvf0p1fZQoaAZoCWgPQwiKHCJuTntZwJSGlFKUaBVLTWgWR0AT+jua4MF2dX2UKGgGaAloD0MIrrzkf/IjWsCUhpRSlGgVSzdoFkdAD/p/wy6+WXV9lChoBmgJaA9DCEiMnlvoBVnAlIaUUpRoFUtJaBZHQBMesLfDUEx1fZQoaAZoCWgPQwg978aCwihdwJSGlFKUaBVLQGgWR0AN+armyPdVdX2UKGgGaAloD0MIXb9gN2w/WcCUhpRSlGgVSztoFkdAFPkiD/VAiXV9lChoBmgJaA9DCOUn1T4d3l7AlIaUUpRoFUuTaBZHQBLqS5iExqR1fZQoaAZoCWgPQwjBpzl5kfpZwJSGlFKUaBVLPmgWR0ARBQN0/4ZddX2UKGgGaAloD0MI7X+AtWrBWcCUhpRSlGgVS2poFkdAFNdp7CzkZXV9lChoBmgJaA9DCD5A9+XMrVnAlIaUUpRoFUtVaBZHQBRGV3Ux20R1fZQoaAZoCWgPQwhXtDnObaxZwJSGlFKUaBVLSmgWR0ASM6YE4ecQdX2UKGgGaAloD0MIW9B7Ywi9W8CUhpRSlGgVSztoFkdAFc+FDfFaS3V9lChoBmgJaA9DCN5zYDlC2lvAlIaUUpRoFUtAaBZHQBVVYZEUj9p1fZQoaAZoCWgPQwiZYaOs3/9YwJSGlFKUaBVLSWgWR0ATaNQ0oBq9dX2UKGgGaAloD0MILJ0PzxIpXMCUhpRSlGgVSzFoFkdAFp8hcJMQE3V9lChoBmgJaA9DCOpdvB+3FVzAlIaUUpRoFUtHaBZHQBaEpEx7AtZ1fZQoaAZoCWgPQwizJ4HNOT5ewJSGlFKUaBVLamgWR0AYcFyJbdJrdX2UKGgGaAloD0MICRfyCG62W8CUhpRSlGgVS0poFkdAF9BbOeJ53XV9lChoBmgJaA9DCAN7TKQ0VFvAlIaUUpRoFUs0aBZHQBi9xdY4hll1fZQoaAZoCWgPQwhIMqt3uMNdwJSGlFKUaBVLU2gWR0AZ6f29L6DXdX2UKGgGaAloD0MIEJIFTOBlZ8CUhpRSlGgVTccDaBZHQB0/hMrVe8h1fZQoaAZoCWgPQwhh3Xh3ZDNmwJSGlFKUaBVNHgNoFkdAFuO1OTJQtXVlLg=="
79
+ },
80
+ "ep_success_buffer": {
81
+ ":type:": "<class 'collections.deque'>",
82
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
83
+ },
84
+ "_n_updates": 8,
85
+ "n_steps": 1024,
86
+ "gamma": 0.999,
87
+ "gae_lambda": 0.96,
88
+ "ent_coef": 0.0,
89
+ "vf_coef": 0.5,
90
+ "max_grad_norm": 0.5,
91
+ "batch_size": 128,
92
+ "n_epochs": 8,
93
+ "clip_range": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWV5QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWS9ob21lL3JsL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxZL2hvbWUvcmwvbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
96
+ },
97
+ "clip_range_vf": null,
98
+ "normalize_advantage": true,
99
+ "target_kl": null
100
+ }
BipedalWalker-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d38e0f693febd277034d593fc3ba03d0a8960ec5d41e70b0f5b5da34039b8a3
3
+ size 105008
BipedalWalker-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7642650107b06329c9e33a20eb284c3cc2cea1b9aaa011ce7e802e696d5f87c8
3
+ size 51902
BipedalWalker-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
BipedalWalker-v3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.0-58-generic-x86_64-with-glibc2.17 # 64-Ubuntu SMP Thu Jan 5 11:43:13 UTC 2023
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.2
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - BipedalWalker-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: BipedalWalker-v3
16
+ type: BipedalWalker-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -116.00 +/- 1.89
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **BipedalWalker-v3**
25
+ This is a trained model of a **PPO** agent playing **BipedalWalker-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4418a31310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4418a313a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4418a31430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4418a314c0>", "_build": "<function ActorCriticPolicy._build at 0x7f4418a31550>", "forward": "<function ActorCriticPolicy.forward at 0x7f4418a315e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4418a31670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4418a31700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4418a31790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4418a31820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4418a318b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4418a31940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4418a28d80>"}, "verbose": false, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "n_envs": 64, "num_timesteps": 65536, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677206739598268315, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV5QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWS9ob21lL3JsL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxZL2hvbWUvcmwvbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdRgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAGAAAAAAAAHI4oz1cNsC7N1SaPO5cAbz4elK/kKEiO5DA1b4nNYC/AACAP0OakD8AFMy40lxvP0CRjroAAAAAD5hfPhsiYj4fDGo+fVB4PtZ0hz4Hy5g+x9mzPnuv4D5mQxo/1S1/P3D5xz7KcIY9zo+SvLpEZr0fuVG/AAAAMzCbyL31/3+/AAAAAJDSgT8CAIC/gNvpvhQ+Mj8AAIA/N9SOPnVzkD6ngZU+vZ6ePj0OrT5bNMM+zMXlPraGDz9E/0M/AACAPwOmzj4NKw88Kx0mvb1c9TsCp4M/YDP4PR5Xwj4BAIC/AAAAABGNQ7/UsDc/tEbyvklwnD8AAIA/0zGJPrDAij7Um48+4FyYPpk6pj4Kgbs+Y7XcPkfdCT/qTj0/AACAP0nv9z227HA83GatvMCsvDxbElS/4CQyO1QyNT6XYIC9AACAP8n3hj/udlW/7MBwP9P9fz8AAIA/y3lnPsEaaj4wTHI+p4iAPjU7jD7ZLZ4+xTC6PhGb6D7LaR8/AACAP3VgFz6YdYY94J8rPK/7ijqyFog/1Y9kv3zZdj///38/AAAAAEmaO78hyA6/QPb7vv//f78AAIA/PP+CPhR8hD4QH4k+4HqRPj24nj6lCLM+AL3SPvGiAz+owTQ/AACAP27B9j2Mvfa8GSOOPZT3rrzo8o8/AIxWu2qEej/sIVY/AACAP5jOVb8AsN84IFPjvYU5gD8AAIA/C350PthEdz467H8++8KHPu8dlD7xEqc+G6nEPpWv9T5+rig/AACAP0kiqD1tLIU7HA/ePIo1wzuVvFW/AABnNWDUA7/5/38/AAAAAKUskD8AACiz3qVqP1UVZrYAAIA/b69gPqc8Yz6PMGs+wIZ5PhYeiD7wiZk+f7q0PjnI4T4lBBs/Typ5P5K5mz2sJCg9X4z5PLp6V71E30i/9v9/vxA+lb79/3+/AAAAAKhEkT8AAAAASlZvP6uqqrMAAAAAzw5xPqDLcz7jU3w+w9qFPkgJkj4euqQ+4uXBPg888j7iTyY/j0l9P/L4xD1taCw9pFV9O228lrwcEUS/2/ilvjChBr4AAIC/AAAAAE96iT+SbEC/iPRwPwAAgD8AAIA//69vPtRocj6s5Ho+9heFPsE0kT5jyqM+tMvAPojb8D7ZXSU/AACAP0K4PT98VuW8SX0SPVrxSDyrRJE/AAAAM5xjIr8AAAAAAAAAAIS8Vb8AAAAAHHb1vtu1+z0AAAAAqG2QPowRkj48Lpc+cmWgPlT+rj7xY8U+eljoPiYiET8rSkc/AACAPzEWbD6zxye8BvsSvU0KYbsKuYs/DwCAP9ApUT///3+/AAAAAIqgVb8AAACz2Ir+vvX/fz8AAAAAsWWAPvragT5nZoY+wJeOPtmRmz4Me68+U47OPicGAT/+pjc/AACAP+Sfpz9wBwS7iwbDvHfkAz3hMU6/TG2LPRj9HL+g8R09AACAP7NvRL4JZbe/iJ4QvkOVlz8AAIA/6lyePlEpoD5FxKU+Gd+vPoXgvz5Rb9g+N8P+PtIiHz90hFo/AACAP1GOuT5kECm9TLP7O3+9jrwJyI8/nLtEPxDrGT/4/X8/AAAAADe0T78AACI20EKZvq0UgD8AAIA/0BSIPnCgiT5+cY4+WiCXPkXhpD6D+7k+4uraPuC+CD+kxTs/AACAP1SbRz76U7c6Bx8dPd9URLwq4ow/AABQMsgFXj/3/3+/AAAAAImCR7/L5hE+SOYQv/z/f78AAAAAdj+BPji3gj5bSoc+mImPPrWZnD6spLA+p+zPPvzgAT/LVzI/AACAP5KBpD1qOJS7ce+8O5+YRDsQ2VW/XBxbvGjhgz0JwoA/AACAP1Bmjz8AfvI5ZGptP3UnzDwAAAAATZtgPkooYz58G2s+ZHB5PuQRiD4ufJk+Tqq0Pv2z4T7yFBs/+lZ5P5okwz7UXkE86t+hvGn6+7wUvVW/AABgMyy3Hr/8/3+/AAAAALYVQz8DAIC/fjRdP6ebgD8AAAAAKmOCPjzegz6ye4g+jM2QPiT7nT5YM7I+7cHRPhwGAz9N6jM/AACAP106JD72++g8OmyEPFOPUj2Pgk+/APPyOjCdYz0ow38/AACAP2NcjT8AsHu4wrEyP2s1w74AAIA/HdNwPkGPcz5mFXw+nbmFPh7lkT5TkaQ+3rXBPhIA8j6zJiY/AACAPztP3D1OEqs8JItLuxKv4zzKvFW/AAA9thiVyr4WAIA/AAAAAKVEkT8AAOAzovZVP4Uufr4AAIA/ke5iPlGCZT6Uim0+eAV8PoJ6iT70Eps+HYm2PikK5D7xkBw/JLZ4PxITzz2ieQS9XGrRO668ubym5lO/bQMyPsA1U739/38/AAAAAJo4iz/cWXg/NFFXPwAAgL8AAAAAR/l0PnvBdz6cNoA+aQeIPpdolD4nZ6c+PAzFPmsr9j5MHyg/AACAP+DfsT63X/a84yKdPIUIsrwgOYo/pEYNP0wfSD8lAIA/AAAAAPUtS7/wkq68/D7PvkdcPj8AAIA/Tt2GPmRliD5rK40+aMaVPtZnoz7GUbg+wPXYPtmFBz/OFzo/AACAPyhjQT580189kJKWvcbCgj1UY1W/AECfNxBP6L6dAIC/AACAP1qijj8AAFi1qfQhP9UDKL8AAIA/hfNsPmakbz5zB3g+AJODPmWMjz6366E+RJi+PqMb7j6SeiM/AACAP+VeYT2DbZO9QnTBOztOfb18cUq/NZXnPrhBxT3//38/AAAAADN6mT/8/38/EFZvP6uqKrQAAAAAO9hiPrprZT4zc20+qux7PvpsiT6xA5s+Jne2Prfz4z6JgRw/AACAPyy4ij6Ichc7a/DkPO1Orzw5A1a/YOd2upgaZ76jDYA/AACAPwwCjj8AgPQ3CBW+PmvQqb0AAIA/Zbx4PomPez6vLoI+Nh6KPg+wlj5N+ak+7hLIPj3z+T7+mys/AACAP3s2XD56FDU9xSgZvSg4e70L+YU/wH48vApWbz8AAAAAAAAAAIb5UL/8/3+/SFyzvmlTh74AAIA/A+KBPp5bgz6B9Ic+Hj6QPqhenT7VgrE+J/LQPlSEAj8XODM/AACAP8MB1T2Wsy+9aaioPX/0gbzHuY8/AMCHuHIbfD9T9AQ/AACAP8/HVb8AAPc2YL/fPXsENz4AAIA/2bh0PlGAdz7kFIA+o+OHPo9BlD4gO6c+aNjEPq3q9T4Q1yg/AACAPwnNnD7G6rg8vFJ2vHY0trnjD2E/g2wWvvRVbz/ljkY6AACAP4VET78AwNy3VHgov5QHgL8AAIA/peuEPhVuhj5+Ios+uZ2TPtwMoT6fqbU+J9XVPsKRBT8caTc/AACAP+5qcj706lG73Zf4vNM8yjzcC4U/pHBLvaALSj8jTBQ/AACAP1kbUL8AAAC1eFgDv5Pzfz8AAAAArwuCPsOFgz4gIIg+ZWyQPiaRnT7Ju7E+MTXRPjSuAj+XcTM/AACAP63oKz40NLM7Oq9avRwPfry53U6/ncCWvqCCH79j1XK+AACAPy4/jj8AAAAAYPVQP/v/f78AAAAAu7ZtPtNpcD7J03g+Zv+DPqgCkD4dcaI+STW/Ps3f7j5BASQ/AACAP14CfD7Skae9xbEwOn1wEj2n6Tm/YpYhPyAf8b31/38/AAAAAMgMkT83gyc/SsD0PlWYKDwAAAAAodyCPhRZhD7X+og+cVSRPlCOnj5a2bI+VIXSPiuAAz/okTQ/AACAP6cwwT47bzc9czzOvdvKJT2El1C/AChsOihuL75Jxr69AACAPwVoNj+I5be+oFZvP6sKszcAAIA/c3mDPq73hD79nok+mgKSPlJMnz6tr7M+nIHTPsEdBD9LajU/AACAPw4xlD6J3788/CT0uwMRLz3CGpA/wEUeO3qN9D4JdSW9AACAPwv+Vb8A0KO4aK/AvrSQfz8AAIA/NzWCPsSvgz6ZS4g+hZqQPnjDnT6L9LE+AXjRPvDXAj/mqjM/AACAP2gUDD5vMdS6mghCPAaQHz3PnUi//5a3vRgaiL58cUa9AACAPwGdej9s9Ee/gy2KP+h02j8AAIA/k/psPoirbz7VDng+65aDPquQjz6J8KE+8J2+PjGY7j4YACI/AACAPyGCVj6kLBu9Pt1SPYp6Dj2ch40/gup/vjyKPD8AAIA/AAAAAMFFTr86Gza/yEuJvgMAgD8AAIA/56WFPnQqhz515Ys+k2yUPonuoT4uqLY+ygDXPuxMBj8eajg/AACAP8ad8T7donc912w+veY5grywDo0/PZrAvii8qb7//3+/AAAAAJ+OUb8BAIC/eKC7vlj/3r4AAIA//r2MPitXjj50UpM+c02cPvaGqj48WsA+YWriPuFtDT8Z1UU/AACAP2BvOD1Z5h+9NXaiPGn8gbx6Qku/7mIZPtIsjT4W5pU9AACAP2PRlT91BYA/+utVP7DQf78AAIA/ywJsPvCwbj54C3c+VQ2DPo/6jj43R6E+ota9Prwp7T591CI/AACAP6n8DT2yauU8uPjjPBGYorypIDa///9/v3CTtL4AAIA/AAAAAELtjj8AAAAADhlpP8H8T74AAIA/zWd3PhI3ej5tfIE+FmGJPrnhlT6OEKk++ADHPvuc+D4CsSo/AACAP8xrJT7NpnY8UdoZPZ1tTbwL90G/j6HmvZCi5760smu/AACAPzRqgT9CVlW/BlZvP6uqKrMAAAAAw9F0PoSZdz7uIYA+ePGHPqdQlD4mTKc+c+zEPrYD9j7/Eiw/AACAP/kJhD0pxie8TWdIPOBeJT3HvFW/gJ1WuqBJhTxiAoA/AAAAADXfjT8AgAA4AFZvP6BFkTsAAAAAyWxqPlIWbT56YnU+4iuCPpgEjj7FMaA+D5C8Pr6R6z6N5CI/Xrx8P249Kj7vlQu8iAtgPYAPeLz/bo4/DGSOvoJObz8AAAAAAAAAAFvMT7/+/3+/ADL2vEA5wz8AAAAAgLWFPjo6hz7J9Ys+5n2UPm8Boj6AvbY+4hnXPplcBj+jfzg/AACAP4wA+z5GfYI8WijXu/OCiDxuz0S/utYTPkiJIr8AAAAAAAAAAMFrTT86Sjy/QCD/PDcPJz8AAIA/M2qWPn8fmD5tcp0+bQunPjQ/tj54ks0+6/nxPiwmFz8zgUk/AACAP7NGIj5dp5W8n7JIvN2zK73who8/JFULPwIibD8AAAAAAAAAAK53UL8AAAAAAJuUvTlOyz4AAAAAL6GBPg0agz6lsIc+H/aPPhwQnT47KrE+3YnQPi9DAj+j3jI/AACAPwrE1T1xSQ89Xm2DvUSPkL2oRJE/rq4qvqgUXD8AAIA/AAAAAFAGF7+bRnu+KosJv/v/f78AAAAA0kaNPo3hjj6u4ZM+aOWcPr4sqz49FcE+gEbjPmD3DT/a8EI/AACAPwbi/j4klAi9siMAPTpsYr2NvFW/AAAAADx4y74kcw6/AAAAAGcjfD+yyYK+MJogvwAAAAAAAAAAkVyIPgLpiT6ZvI4+CnCXPjU4pT6UXbo+UF7bPvoGCT+mKDw/AACAPzOXNb+q3gC+WQ2aPtofTLy9OSc/PgDYPtjqE7/7/38/AAAAAA+oQL4Px6M/RlMTP/3/f78AAAAAAI+PPl0wkT4rRZY+LG6fPo3wrT6jM8Q+SfLmPmhCED/vFkY/AACAPzUCmj3qG0O6wL6HvP8Q2Ly7DlW/AACQMVBHGb8BAIC/AAAAAP1vjz8pSAm90ixmP1stHj8AAIA/QetwPquncz6rLnw+BceFPr7zkT7SoaQ+ScnBPlQY8j5bNyY/AACAPyrZtz3OTSq9G2QkPDRFrjyjcjm/ZiuwPpBRZD1DzmS+AACAP6BEkT8AgBu4RCBbPwAeVD8AAAAAqz9zPtsCdj73nn4+MhKHPg5dkz5hOaY+BanDPqdv9D7W0ic/AACAP5c8rj4CVRU6+943vTZlrjxfAoo/hhAiv5J29D45AYC/AAAAADO/Vb8A3FG2WJ+avmiCDz8AAIA/B9GFPhFWhz6ZEow+eJyUPskioj4f47Y+KkbXPkJ4Bj+fpTg/AACAP34LDz7C25c8TblhPMPDnzyvU1a/4Eh9u5AsVj3wtX6/AAAAAOVojT8AoJ04jNBKPykUWL4AAAAAPZdoPnA7az77dnM+JyeBPiPojD7o8J4+Xxa7Pui56T5reCA/AACAP3xhaD80QFA8QqK4vXvvMD0pWmA/OFGAP7ogAr/z+n+/AAAAAEcnVb++7F898p4iv8DmSDwAAAAAJ+iNPreEjz6OipQ+k5idPjjwqz678cE+CkrkPn+ZDj94z0M/AACAP7K5sz4u/c68HMW3PPsdR7kssoo/zMk8PloftD6E2Om8AACAP9rmVb8AADe2+PZjvnXlfz8AAIA/DHKFPgL2hj4ur4s+/DKUPrSvoT5PYbY+Xq3WPtEYBj+QIjg/AACAP8FGeD4R/sO8VN1BvNYv2ru3how/R2NcP/HJJD8AAIC/AACAP92PVL/MF6E9APYJveiGQT0AAIA/2bSBPvEtgz47xYc+9guQPu8nnT4bRbE+f6nQPvFWAj/F+TI/AACAPyJQvT47ykg9Jj8Hu/f7NLwvtlG/AXlev3z6ob5zE30/AACAP163Wz+5Im6/TaInPwAAgD8AAIA/hPGBPkxrgz68BIg+Vk+QPnFxnT4FmLE+GAvRPuiTAj98TTM/AACAP2Cepj57f/A7S0cAvRUgBDyZiVO/oMyFulZzG78F2y89AACAP2TJgD9VHga+WrfrPuDK5z0AAIA/kS98PrwMfz7q/IM+ngiMPhnHmD7RVKw+UtnKPrlq/T57cS0/AACAPwEFcz4SU8U8Eb1uvNI94bwVWlW/Vp0Av5J/C7/Y9WI/AACAPxM6kT8AAAAAIqZeP/v/f78AAAAAC+pxPlqpdD5fOX0+f1SGPhiOkj7uT6U+OpbCPl0Y8z4j5yY/AACAPwC0VD4TcxC9y0qcPB8pqTyUi4s/oQkKvmwKUT8BAIA/AACAP99fT7/nqKE+CCm+vkSthr4AAIA/syGAPjaWgT48H4Y+PUyOPng/mz4fHq8+8SDOPtTBAD98zTA/AACAPyihqT5rrqE7zog2vG3eTDxFElo/ripWvQpWbz8AgE62AACAP6VJUr8AAPCzmEQav7pCqD4AAIA/VCeFPnGqhj73YIs+AuCTPixVoT4x+7U+KzXWPrvNBT92uzc/AACAPxyxlT3660O6P1LWvF+8jDxRJDy/cXRSP4jmCD4AAIC/AACAPyQBjj8AAAAAWg9lPwS7B70AAAAAU+1uPvKjcT7mGHo+3auEPtG+kD5bRaM+Hi/APn4M7z7JvSE/AACAPzB+2z15qAK9jzQOPBYEiDv9l0S/JFCAvkDvwr4BAIA/AACAPx76jD8AAAAAFEpmP+EFMD8AAAAApZRvPitNcj4LyHo+xgiFPi8kkT6yt6M+tLXAPgzA8D76SiU/AACAPxd5bj6Za5y8rRp5vU5/S7xPl24/Qs52v2xubD/FANM/AACAP/rgLb/8PDk/pNEAv/v/fz8AAAAAgveJPp2Iiz7BapA+ajiZPh4qpz43j7w+aPPdPu2jCj8dG0A/AACAP7eKVz4vs2G9D4SiPc1wx7yBLBq/55IuPmggbL77/3+/AAAAAGWgjD8OKE6+HFZvP6uqKrMAAAAApNuJPm5siz6VTZA+eBmZPloIpz4habw+k8bdPuyHCj88OT4/AACAP2jAjz0jGu65Kod0Ow0osjs2wVW/gKlOOnQijL4P9H8/AAAAAJ4/kT9AuQm4rPRuPxX4tbsAAIA//81dPtdSYD6lLGg+yFN2PlZfhj4Ckpc+VGmyPi/j3j5eBxk/AACAP8rO7z37dmY9NpknvXKkxr2aEV2/+/9/vwAwfDuJbKo/AAAAADc7jz9vki++vu1tPwAAgD8AAIA/Q2lpPtkPbD7SUnQ+xpuBPl9njT5tgJ8+Tr+7PvSM6j5SCSE/AACAP8M9/D7CayC9sLVqvfec97xfnlo/TxiNPngtsz6tXrk9AACAP9ZWE78Fvzo/UIkiv6uqKjUAAAAAWXWSPiQflD45Tpk+mKaiPgF0sT40Ksg+hJzrPmEsEz9EF0o/AACAP9URaz5JfZ0722cbPJvHujubIYE/pQQJv0ThbD/Y/38/AAAAAJC8Vb8AAFw0kokiv1UrSDkAAIA/a1N+PmebgD6lG4U+1DiNPv4Smj4xy60+/pHMPj+R/z5Ldy8/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLQEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -64.536, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKm9HOC1hXMCUhpRSlIwBbJRLRIwBdJRHQAE5Ukv9LpR1fZQoaAZoCWgPQwiN7ErLSEpbwJSGlFKUaBVLR2gWR0ABW32EkB0ZdX2UKGgGaAloD0MISu6wiczwXMCUhpRSlGgVS0hoFkc//+6Ymb9ZR3V9lChoBmgJaA9DCDVgkPRpU1nAlIaUUpRoFUtIaBZHQAed0aIeo1l1fZQoaAZoCWgPQwioHf6arPJZwJSGlFKUaBVLSWgWR0ACS59Vmz0IdX2UKGgGaAloD0MICOQSRx4cWsCUhpRSlGgVS0loFkc//ToLXtjTa3V9lChoBmgJaA9DCASQ2sTJv1jAlIaUUpRoFUtJaBZHP/+ahYeT3Zh1fZQoaAZoCWgPQwi70FynkXNbwJSGlFKUaBVLS2gWR0ACE63iJfpmdX2UKGgGaAloD0MIsYf2sYL/XcCUhpRSlGgVS0xoFkdAALa6jFhod3V9lChoBmgJaA9DCDLGh9nLV1rAlIaUUpRoFUtOaBZHQA9NmlImPYF1fZQoaAZoCWgPQwjFU480uL5YwJSGlFKUaBVLT2gWR0ALH7SApazNdX2UKGgGaAloD0MInPwWnSwUX8CUhpRSlGgVS1RoFkdAAA3b212JSHV9lChoBmgJaA9DCEzHnGfsd1jAlIaUUpRoFUtXaBZHP/+iBXjlxOt1fZQoaAZoCWgPQwgvxOqPMMNewJSGlFKUaBVLYGgWRz//QpvxYq5LdX2UKGgGaAloD0MIOUVHcvkSWcCUhpRSlGgVS2FoFkdAAkwFkhA4XHV9lChoBmgJaA9DCBy3mJ8bu1rAlIaUUpRoFUswaBZHP/8ljmSyMUB1fZQoaAZoCWgPQwhPPj22Zb5YwJSGlFKUaBVLZGgWR0AAH7xd6cAjdX2UKGgGaAloD0MIiZl9HqPaXcCUhpRSlGgVS2VoFkdAAsju8brC33V9lChoBmgJaA9DCN9sc2N6WVvAlIaUUpRoFUsvaBZHP/9hFVktmL91fZQoaAZoCWgPQwi+EkiJXWFawJSGlFKUaBVLamgWR0AFYnrpqynldX2UKGgGaAloD0MIwjHLngShWsCUhpRSlGgVS2toFkdACA/nnuAqeHV9lChoBmgJaA9DCEq1T8djnVvAlIaUUpRoFUtuaBZHQAKlEqlP8AJ1fZQoaAZoCWgPQwgy6e+l8FhcwJSGlFKUaBVLRGgWR0ADJEH+qBEsdX2UKGgGaAloD0MImsx4W+kGWsCUhpRSlGgVS3BoFkdAB28wHqu8snV9lChoBmgJaA9DCGVx/5HpjVnAlIaUUpRoFUt0aBZHQAy8cENe+mF1fZQoaAZoCWgPQwgX1/hM9jJewJSGlFKUaBVLd2gWR0ACrNSqEOAidX2UKGgGaAloD0MIgEQTKGLXXcCUhpRSlGgVS4NoFkdAAh8sMAmzB3V9lChoBmgJaA9DCLIS86ykj17AlIaUUpRoFUuEaBZHQBNOfI0ZWJd1fZQoaAZoCWgPQwiuKZDZWThcwJSGlFKUaBVLVmgWR0AQ3TkQwsXjdX2UKGgGaAloD0MItYzUeypUW8CUhpRSlGgVS0hoFkdAA7+0gKWszXV9lChoBmgJaA9DCKPlQA+1oFnAlIaUUpRoFUtTaBZHQADSGi5/b0x1fZQoaAZoCWgPQwgraFpiZelZwJSGlFKUaBVLUGgWR0AM4eJYT0xudX2UKGgGaAloD0MI7N/1mbMFYMCUhpRSlGgVS5BoFkdABMW+GoJiRXV9lChoBmgJaA9DCLAdjNgnNVnAlIaUUpRoFUtSaBZHQAQUQ04zabp1fZQoaAZoCWgPQwhSJ6CJsIJZwJSGlFKUaBVLTWgWR0ACugOBlMAWdX2UKGgGaAloD0MI6X+5Fi30WcCUhpRSlGgVS05oFkdABCmVJL/S6XV9lChoBmgJaA9DCOvgYG9iPVvAlIaUUpRoFUsvaBZHQAFct5D7ZWd1fZQoaAZoCWgPQwia7J+nAfxawJSGlFKUaBVLO2gWR0ACN/x2B8QadX2UKGgGaAloD0MITZ8dcF0PXcCUhpRSlGgVS05oFkdAAswJw84ginV9lChoBmgJaA9DCHhEhermT1vAlIaUUpRoFUstaBZHQARCOearmyR1fZQoaAZoCWgPQwjac5maBMNcwJSGlFKUaBVLPWgWR0AHiuW8h9srdX2UKGgGaAloD0MIFcYWghzfWcCUhpRSlGgVSzxoFkdACi83++/QB3V9lChoBmgJaA9DCNXo1QCl+FrAlIaUUpRoFUtYaBZHQA44hEBsANp1fZQoaAZoCWgPQwhVNNb+zmRcwJSGlFKUaBVLOGgWR0AJahWYF7ladX2UKGgGaAloD0MIN4yC4PGDW8CUhpRSlGgVS21oFkdABAi9qUNayXV9lChoBmgJaA9DCB3k9WBSL1rAlIaUUpRoFUtTaBZHQAU7NKRMewN1fZQoaAZoCWgPQwjZCpqWWDtgwJSGlFKUaBVLgmgWR0AGYjOcDr7gdX2UKGgGaAloD0MIem8MAcB6WsCUhpRSlGgVS1xoFkdABftIClrM1XV9lChoBmgJaA9DCGqIKvwZI1rAlIaUUpRoFUuGaBZHQALXVkMCtA91fZQoaAZoCWgPQwjIfhZLkV1dwJSGlFKUaBVLM2gWR0ADEMgEEC/5dX2UKGgGaAloD0MIAYkmUMSEXcCUhpRSlGgVS3BoFkdAA4JokAxSHnV9lChoBmgJaA9DCDONJhdjTVnAlIaUUpRoFUtJaBZHQA9ZPuXu3MJ1fZQoaAZoCWgPQwinlq31RZ9bwJSGlFKUaBVLZ2gWR0AQHU1AJLM+dX2UKGgGaAloD0MIXKrSFtc1WcCUhpRSlGgVS25oFkdABmgZjx0+1XV9lChoBmgJaA9DCI5Yi08BrlrAlIaUUpRoFUs6aBZHQAYuTq0MPSV1fZQoaAZoCWgPQwg+BitOtS5dwJSGlFKUaBVLPWgWR0AE10eU6gdwdX2UKGgGaAloD0MIfm/Tn/0mWsCUhpRSlGgVS09oFkdABtJnQID5kHV9lChoBmgJaA9DCDwUBfpEeFnAlIaUUpRoFUtCaBZHQBA2P91loUV1fZQoaAZoCWgPQwg3iUFg5axZwJSGlFKUaBVLXGgWR0AMW8yvcJt0dX2UKGgGaAloD0MICf8iaMwPXcCUhpRSlGgVS19oFkdABwyDZlFtsXV9lChoBmgJaA9DCDlGskeoDVrAlIaUUpRoFUs9aBZHQAVy1Vo6CDp1fZQoaAZoCWgPQwiRDDm2npBdwJSGlFKUaBVLXmgWR0AIPSx7iQ1adX2UKGgGaAloD0MI6njMQGVaWsCUhpRSlGgVS1ZoFkdACL8gpz90inV9lChoBmgJaA9DCIYeMXpuO1rAlIaUUpRoFUs8aBZHQAhVdPci4ax1fZQoaAZoCWgPQwhZ3eo56SRbwJSGlFKUaBVLUWgWR0AFs/KQq7ROdX2UKGgGaAloD0MIPdf34SCkXMCUhpRSlGgVSzhoFkdAEReRgZ0jknV9lChoBmgJaA9DCH+FzJVB+FvAlIaUUpRoFUvgaBZHQA8065oXbdt1fZQoaAZoCWgPQwjSAUnYtyhfwJSGlFKUaBVLvmgWR0AJeoR7JGONdX2UKGgGaAloD0MIRSv3ArOIXcCUhpRSlGgVS1NoFkdAEXhTOxB3R3V9lChoBmgJaA9DCG7BUl3AwVvAlIaUUpRoFUtGaBZHQA6j0cwQDmt1fZQoaAZoCWgPQwj7PbFOlTZdwJSGlFKUaBVLdWgWR0ARkQoTfzjFdX2UKGgGaAloD0MIcNI0KJpPWsCUhpRSlGgVSzBoFkdAEj0cfeUILXV9lChoBmgJaA9DCH4CKEaWSFnAlIaUUpRoFUtjaBZHQAjsDOkcjqx1fZQoaAZoCWgPQwiAY8+eyytawJSGlFKUaBVLZ2gWR0ASyUmlZX+3dX2UKGgGaAloD0MI73IR34l3XMCUhpRSlGgVS0JoFkdAEHA1ejVQRHV9lChoBmgJaA9DCIC1ateET1nAlIaUUpRoFUtCaBZHQBKwTEit7rt1fZQoaAZoCWgPQwj0T3CxonNdwJSGlFKUaBVLiWgWR0AR3336AOJ+dX2UKGgGaAloD0MIyorh6gDKWcCUhpRSlGgVS4toFkdADhRb8m8dxXV9lChoBmgJaA9DCE29bhEYhFvAlIaUUpRoFUtVaBZHQAvNB4Uvf0p1fZQoaAZoCWgPQwiKHCJuTntZwJSGlFKUaBVLTWgWR0AT+jua4MF2dX2UKGgGaAloD0MIrrzkf/IjWsCUhpRSlGgVSzdoFkdAD/p/wy6+WXV9lChoBmgJaA9DCEiMnlvoBVnAlIaUUpRoFUtJaBZHQBMesLfDUEx1fZQoaAZoCWgPQwg978aCwihdwJSGlFKUaBVLQGgWR0AN+armyPdVdX2UKGgGaAloD0MIXb9gN2w/WcCUhpRSlGgVSztoFkdAFPkiD/VAiXV9lChoBmgJaA9DCOUn1T4d3l7AlIaUUpRoFUuTaBZHQBLqS5iExqR1fZQoaAZoCWgPQwjBpzl5kfpZwJSGlFKUaBVLPmgWR0ARBQN0/4ZddX2UKGgGaAloD0MI7X+AtWrBWcCUhpRSlGgVS2poFkdAFNdp7CzkZXV9lChoBmgJaA9DCD5A9+XMrVnAlIaUUpRoFUtVaBZHQBRGV3Ux20R1fZQoaAZoCWgPQwhXtDnObaxZwJSGlFKUaBVLSmgWR0ASM6YE4ecQdX2UKGgGaAloD0MIW9B7Ywi9W8CUhpRSlGgVSztoFkdAFc+FDfFaS3V9lChoBmgJaA9DCN5zYDlC2lvAlIaUUpRoFUtAaBZHQBVVYZEUj9p1fZQoaAZoCWgPQwiZYaOs3/9YwJSGlFKUaBVLSWgWR0ATaNQ0oBq9dX2UKGgGaAloD0MILJ0PzxIpXMCUhpRSlGgVSzFoFkdAFp8hcJMQE3V9lChoBmgJaA9DCOpdvB+3FVzAlIaUUpRoFUtHaBZHQBaEpEx7AtZ1fZQoaAZoCWgPQwizJ4HNOT5ewJSGlFKUaBVLamgWR0AYcFyJbdJrdX2UKGgGaAloD0MICRfyCG62W8CUhpRSlGgVS0poFkdAF9BbOeJ53XV9lChoBmgJaA9DCAN7TKQ0VFvAlIaUUpRoFUs0aBZHQBi9xdY4hll1fZQoaAZoCWgPQwhIMqt3uMNdwJSGlFKUaBVLU2gWR0AZ6f29L6DXdX2UKGgGaAloD0MIEJIFTOBlZ8CUhpRSlGgVTccDaBZHQB0/hMrVe8h1fZQoaAZoCWgPQwhh3Xh3ZDNmwJSGlFKUaBVNHgNoFkdAFuO1OTJQtXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 8, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.96, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV5QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWS9ob21lL3JsL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxZL2hvbWUvcmwvbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-58-generic-x86_64-with-glibc2.17 # 64-Ubuntu SMP Thu Jan 5 11:43:13 UTC 2023", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac9b8accaf625b550c0f891765952363de3e5a9ce3df10219dc6e9ec779bd3c4
3
+ size 1255250
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -115.99912870420167, "std_reward": 1.886503636549642, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-24T02:48:03.498442"}