Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,195 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
### Model Description
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
|
|
|
|
37 |
|
38 |
-
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
[
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- meta-llama/Llama-3.3-70B-Instruct
|
7 |
+
tags:
|
8 |
+
- function-calling
|
9 |
+
- tool-use
|
10 |
+
- llama
|
11 |
+
- bfcl
|
12 |
---
|
13 |
|
14 |
+
# QUANTIZATION INFORMATION
|
15 |
|
16 |
+
This model was quantized using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library from the vLLM team.
|
17 |
|
18 |
+
The calibration dataset was [ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) with a sequence length of `4096` and a sample size of `1024`
|
19 |
|
20 |
+
The quantiation scheme is `W4A16` with the `lm_head` ignored.
|
21 |
|
22 |
+
Further Parameters were the llm-compressor defaults.
|
23 |
|
|
|
24 |
|
25 |
+
## QUANTIZATION CODE
|
26 |
|
27 |
+
The following code was used to quantize this model:
|
28 |
|
29 |
+
#### LOADING THE MODEL:
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
```python
|
32 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
33 |
+
import torch
|
34 |
|
35 |
+
MODEL_ID = "watt-ai/watt-tool-70B"
|
36 |
|
37 |
+
# Load model with better memory management
|
38 |
+
model = AutoModelForCausalLM.from_pretrained(
|
39 |
+
MODEL_ID,
|
40 |
+
device_map="auto",
|
41 |
+
torch_dtype=torch.bfloat16,
|
42 |
+
)
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
44 |
+
```
|
45 |
|
46 |
+
#### LOADING THE DATASET:
|
47 |
+
```python
|
48 |
+
from datasets import load_dataset
|
49 |
|
50 |
+
NUM_CALIBRATION_SAMPLES=1024
|
51 |
+
MAX_SEQUENCE_LENGTH=4096
|
52 |
|
53 |
+
# Load dataset.
|
54 |
+
ds = load_dataset("HuggingFaceH4/ultrachat_200k", split="train_sft")
|
55 |
+
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
|
56 |
+
|
57 |
+
# Preprocess the data into the format the model is trained with.
|
58 |
+
def preprocess(example):
|
59 |
+
return {"text": tokenizer.apply_chat_template(example["messages"], tokenize=False,)}
|
60 |
+
ds = ds.map(preprocess)
|
61 |
+
|
62 |
+
# Tokenize the data (be careful with bos tokens - we need add_special_tokens=False since the chat_template already added it).
|
63 |
+
def tokenize(sample):
|
64 |
+
return tokenizer(sample["text"], padding=False, max_length=MAX_SEQUENCE_LENGTH, truncation=True, add_special_tokens=False)
|
65 |
+
ds = ds.map(tokenize, remove_columns=ds.column_names)
|
66 |
+
```
|
67 |
+
|
68 |
+
#### QUANTIZING THE MODEL:
|
69 |
+
```python
|
70 |
+
from llmcompressor.transformers import oneshot
|
71 |
+
from llmcompressor.modifiers.quantization import GPTQModifier
|
72 |
+
|
73 |
+
# Configure the quantization algorithm to run.
|
74 |
+
recipe = GPTQModifier(targets="Linear", scheme="W4A16", ignore=["lm_head"], dampening_frac=0.1)
|
75 |
+
|
76 |
+
# Apply quantization.
|
77 |
+
oneshot(
|
78 |
+
model=model, dataset=ds,
|
79 |
+
recipe=recipe,
|
80 |
+
max_seq_length=MAX_SEQUENCE_LENGTH,
|
81 |
+
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
|
82 |
+
)
|
83 |
+
|
84 |
+
# Save to disk compressed.
|
85 |
+
SAVE_DIR = "models/" + MODEL_ID.split("/")[1] + "-GPTQ-INT4"
|
86 |
+
model.save_pretrained(SAVE_DIR, max_shard_size="4GB")
|
87 |
+
tokenizer.save_pretrained(SAVE_DIR)
|
88 |
+
```
|
89 |
+
|
90 |
+
------
|
91 |
+
|
92 |
+
|
93 |
+
# watt-tool-70B
|
94 |
+
|
95 |
+
watt-tool-70B is a fine-tuned language model based on LLaMa-3.3-70B-Instruct, optimized for tool usage and multi-turn dialogue. It achieves state-of-the-art performance on the Berkeley Function-Calling Leaderboard (BFCL).
|
96 |
+
|
97 |
+
## Model Description
|
98 |
+
|
99 |
+
This model is specifically designed to excel at complex tool usage scenarios that require multi-turn interactions, making it ideal for empowering platforms like [Lupan](https://lupan.watt.chat), an AI-powered workflow building tool. By leveraging a carefully curated and optimized dataset, watt-tool-70B demonstrates superior capabilities in understanding user requests, selecting appropriate tools, and effectively utilizing them across multiple turns of conversation.
|
100 |
+
|
101 |
+
Target Application: AI Workflow Building as in [https://lupan.watt.chat/](https://lupan.watt.chat/) and [Coze](https://www.coze.com/).
|
102 |
+
|
103 |
+
## Key Features
|
104 |
+
|
105 |
+
* **Enhanced Tool Usage:** Fine-tuned for precise and efficient tool selection and execution.
|
106 |
+
* **Multi-Turn Dialogue:** Optimized for maintaining context and effectively utilizing tools across multiple turns of conversation, enabling more complex task completion.
|
107 |
+
* **State-of-the-Art Performance:** Achieves top performance on the BFCL, demonstrating its capabilities in function calling and tool usage.
|
108 |
+
* **Based on LLaMa-3.1-70B-Instruct:** Inherits the strong language understanding and generation capabilities of the base model.
|
109 |
+
|
110 |
+
## Training Methodology
|
111 |
+
|
112 |
+
watt-tool-70B is trained using supervised fine-tuning on a specialized dataset designed for tool usage and multi-turn dialogue. We use CoT techniques to synthesize high-quality multi-turn dialogue data.
|
113 |
+
|
114 |
+
The training process is inspired by the principles outlined in the paper: ["Direct Multi-Turn Preference Optimization for Language Agents"](https://arxiv.org/abs/2406.14868).
|
115 |
+
We use SFT and DMPO to further enhance the model's performance in multi-turn agent tasks.
|
116 |
+
|
117 |
+
## How to Use
|
118 |
+
|
119 |
+
```python
|
120 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
121 |
+
model_id = "watt-ai/watt-tool-70B"
|
122 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
123 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype='auto', device_map="auto")
|
124 |
+
# Example usage (adapt as needed for your specific tool usage scenario)
|
125 |
+
"""You are an expert in composing functions. You are given a question and a set of possible functions. Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
|
126 |
+
If none of the function can be used, point it out. If the given question lacks the parameters required by the function, also point it out.
|
127 |
+
You should only return the function call in tools call sections.
|
128 |
+
If you decide to invoke any of the function(s), you MUST put it in the format of [func_name1(params_name1=params_value1, params_name2=params_value2...), func_name2(params)]
|
129 |
+
You SHOULD NOT include any other text in the response.
|
130 |
+
Here is a list of functions in JSON format that you can invoke.\n{functions}\n
|
131 |
+
"""
|
132 |
+
# User query
|
133 |
+
query = "Find me the sales growth rate for company XYZ for the last 3 years and also the interest coverage ratio for the same duration."
|
134 |
+
tools = [
|
135 |
+
{
|
136 |
+
"name": "financial_ratios.interest_coverage", "description": "Calculate a company's interest coverage ratio given the company name and duration",
|
137 |
+
"arguments": {
|
138 |
+
"type": "dict",
|
139 |
+
"properties": {
|
140 |
+
"company_name": {
|
141 |
+
"type": "string",
|
142 |
+
"description": "The name of the company."
|
143 |
+
},
|
144 |
+
"years": {
|
145 |
+
"type": "integer",
|
146 |
+
"description": "Number of past years to calculate the ratio."
|
147 |
+
}
|
148 |
+
},
|
149 |
+
"required": ["company_name", "years"]
|
150 |
+
}
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"name": "sales_growth.calculate",
|
154 |
+
"description": "Calculate a company's sales growth rate given the company name and duration",
|
155 |
+
"arguments": {
|
156 |
+
"type": "dict",
|
157 |
+
"properties": {
|
158 |
+
"company": {
|
159 |
+
"type": "string",
|
160 |
+
"description": "The company that you want to get the sales growth rate for."
|
161 |
+
},
|
162 |
+
"years": {
|
163 |
+
"type": "integer",
|
164 |
+
"description": "Number of past years for which to calculate the sales growth rate."
|
165 |
+
}
|
166 |
+
},
|
167 |
+
"required": ["company", "years"]
|
168 |
+
}
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"name": "weather_forecast",
|
172 |
+
"description": "Retrieve a weather forecast for a specific location and time frame.",
|
173 |
+
"arguments": {
|
174 |
+
"type": "dict",
|
175 |
+
"properties": {
|
176 |
+
"location": {
|
177 |
+
"type": "string",
|
178 |
+
"description": "The city that you want to get the weather for."
|
179 |
+
},
|
180 |
+
"days": {
|
181 |
+
"type": "integer",
|
182 |
+
"description": "Number of days for the forecast."
|
183 |
+
}
|
184 |
+
},
|
185 |
+
"required": ["location", "days"]
|
186 |
+
}
|
187 |
+
}
|
188 |
+
]
|
189 |
+
messages = [
|
190 |
+
{'role': 'system', 'content': system_prompt.format(functions=tools)},
|
191 |
+
{'role': 'user', 'content': query}
|
192 |
+
]
|
193 |
+
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
194 |
+
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
|
195 |
+
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|