--- license: apache-2.0 base_model: NousResearch/Yarn-Mistral-7b-128k tags: - generated_from_trainer model-index: - name: unraveled-7b-dpo-lora results: [] --- # unraveled-7b-dpo-lora This model is a fine-tuned version of [NousResearch/Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k), following the Zephyr alignment protocol. It achieves the following results on the evaluation set: - Loss: 0.5895 - Rewards/chosen: 0.1439 - Rewards/rejected: -0.1833 - Rewards/accuracies: 0.6880 - Rewards/margins: 0.3272 - Logps/rejected: -221.8329 - Logps/chosen: -266.1414 - Logits/rejected: -1.9675 - Logits/chosen: -2.0859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 32 - total_train_batch_size: 256 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6313 | 1.0 | 242 | 0.6318 | 0.1228 | -0.0304 | 0.6600 | 0.1532 | -220.3036 | -266.3521 | -1.9863 | -2.1062 | | 0.6013 | 2.0 | 484 | 0.5983 | 0.1484 | -0.1334 | 0.6760 | 0.2819 | -221.3338 | -266.0959 | -1.9723 | -2.0914 | | 0.5889 | 3.0 | 726 | 0.5895 | 0.1439 | -0.1833 | 0.6880 | 0.3272 | -221.8329 | -266.1414 | -1.9675 | -2.0859 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1