Update README.md
Browse files
README.md
CHANGED
@@ -53,6 +53,1332 @@ model-index:
|
|
53 |
- type: iqm_normalized_95
|
54 |
value: 0.99
|
55 |
name: Normalized Score IQM (95% CI)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
---
|
57 |
# Model Card for Vintix
|
58 |
|
|
|
53 |
- type: iqm_normalized_95
|
54 |
value: 0.99
|
55 |
name: Normalized Score IQM (95% CI)
|
56 |
+
- task:
|
57 |
+
type: in-context-reinforcement-learning
|
58 |
+
name: In-Context Reinforcement Learning
|
59 |
+
dataset:
|
60 |
+
name: MuJoCo
|
61 |
+
type: ant_v4
|
62 |
+
metrics:
|
63 |
+
- type: total_reward
|
64 |
+
value: 6315.00 +/- 675.00
|
65 |
+
name: Total reward
|
66 |
+
- type: normalized_total_reward
|
67 |
+
value: 0.98 +/- 0.10
|
68 |
+
name: Expert normalized total reward
|
69 |
+
- task:
|
70 |
+
type: in-context-reinforcement-learning
|
71 |
+
name: In-Context Reinforcement Learning
|
72 |
+
dataset:
|
73 |
+
name: MuJoCo
|
74 |
+
type: halfcheetah_v4
|
75 |
+
metrics:
|
76 |
+
- type: total_reward
|
77 |
+
value: 7226.50 +/- 241.50
|
78 |
+
name: Total reward
|
79 |
+
- type: normalized_total_reward
|
80 |
+
value: 0.93 +/- 0.03
|
81 |
+
name: Expert normalized total reward
|
82 |
+
- task:
|
83 |
+
type: in-context-reinforcement-learning
|
84 |
+
name: In-Context Reinforcement Learning
|
85 |
+
dataset:
|
86 |
+
name: MuJoCo
|
87 |
+
type: hopper_v4
|
88 |
+
metrics:
|
89 |
+
- type: total_reward
|
90 |
+
value: 2794.60 +/- 612.62
|
91 |
+
name: Total reward
|
92 |
+
- type: normalized_total_reward
|
93 |
+
value: 0.86 +/- 0.19
|
94 |
+
name: Expert normalized total reward
|
95 |
+
- task:
|
96 |
+
type: in-context-reinforcement-learning
|
97 |
+
name: In-Context Reinforcement Learning
|
98 |
+
dataset:
|
99 |
+
name: MuJoCo
|
100 |
+
type: humanoid_v4
|
101 |
+
metrics:
|
102 |
+
- type: total_reward
|
103 |
+
value: 7376.26 +/- 0.00
|
104 |
+
name: Total reward
|
105 |
+
- type: normalized_total_reward
|
106 |
+
value: 0.97 +/- 0.00
|
107 |
+
name: Expert normalized total reward
|
108 |
+
- task:
|
109 |
+
type: in-context-reinforcement-learning
|
110 |
+
name: In-Context Reinforcement Learning
|
111 |
+
dataset:
|
112 |
+
name: MuJoCo
|
113 |
+
type: humanoidstandup_v4
|
114 |
+
metrics:
|
115 |
+
- type: total_reward
|
116 |
+
value: 320567.82 +/- 58462.11
|
117 |
+
name: Total reward
|
118 |
+
- type: normalized_total_reward
|
119 |
+
value: 1.02 +/- 0.21
|
120 |
+
name: Expert normalized total reward
|
121 |
+
- task:
|
122 |
+
type: in-context-reinforcement-learning
|
123 |
+
name: In-Context Reinforcement Learning
|
124 |
+
dataset:
|
125 |
+
name: MuJoCo
|
126 |
+
type: inverteddoublependulum_v4
|
127 |
+
metrics:
|
128 |
+
- type: total_reward
|
129 |
+
value: 6105.75 +/- 4368.65
|
130 |
+
name: Total reward
|
131 |
+
- type: normalized_total_reward
|
132 |
+
value: 0.65 +/- 0.47
|
133 |
+
name: Expert normalized total reward
|
134 |
+
- task:
|
135 |
+
type: in-context-reinforcement-learning
|
136 |
+
name: In-Context Reinforcement Learning
|
137 |
+
dataset:
|
138 |
+
name: MuJoCo
|
139 |
+
type: invertedpendulum_v4
|
140 |
+
metrics:
|
141 |
+
- type: total_reward
|
142 |
+
value: 1000.00 +/- 0.00
|
143 |
+
name: Total reward
|
144 |
+
- type: normalized_total_reward
|
145 |
+
value: 1.00 +/- 0.00
|
146 |
+
name: Expert normalized total reward
|
147 |
+
- task:
|
148 |
+
type: in-context-reinforcement-learning
|
149 |
+
name: In-Context Reinforcement Learning
|
150 |
+
dataset:
|
151 |
+
name: MuJoCo
|
152 |
+
type: pusher_v4
|
153 |
+
metrics:
|
154 |
+
- type: total_reward
|
155 |
+
value: -37.82 +/- 8.72
|
156 |
+
name: Total reward
|
157 |
+
- type: normalized_total_reward
|
158 |
+
value: 1.02 +/- 0.08
|
159 |
+
name: Expert normalized total reward
|
160 |
+
- task:
|
161 |
+
type: in-context-reinforcement-learning
|
162 |
+
name: In-Context Reinforcement Learning
|
163 |
+
dataset:
|
164 |
+
name: MuJoCo
|
165 |
+
type: reacher_v4
|
166 |
+
metrics:
|
167 |
+
- type: total_reward
|
168 |
+
value: -6.25 +/- 2.63
|
169 |
+
name: Total reward
|
170 |
+
- type: normalized_total_reward
|
171 |
+
value: 0.98 +/- 0.07
|
172 |
+
name: Expert normalized total reward
|
173 |
+
- task:
|
174 |
+
type: in-context-reinforcement-learning
|
175 |
+
name: In-Context Reinforcement Learning
|
176 |
+
dataset:
|
177 |
+
name: MuJoCo
|
178 |
+
type: swimmer_v4
|
179 |
+
metrics:
|
180 |
+
- type: total_reward
|
181 |
+
value: 93.20 +/- 5.40
|
182 |
+
name: Total reward
|
183 |
+
- type: normalized_total_reward
|
184 |
+
value: 0.98 +/- 0.06
|
185 |
+
name: Expert normalized total reward
|
186 |
+
- task:
|
187 |
+
type: in-context-reinforcement-learning
|
188 |
+
name: In-Context Reinforcement Learning
|
189 |
+
dataset:
|
190 |
+
name: MuJoCo
|
191 |
+
type: walker2d_v4
|
192 |
+
metrics:
|
193 |
+
- type: total_reward
|
194 |
+
value: 5400.00 +/- 107.95
|
195 |
+
name: Total reward
|
196 |
+
- type: normalized_total_reward
|
197 |
+
value: 1.00 +/- 0.02
|
198 |
+
name: Expert normalized total reward
|
199 |
+
- task:
|
200 |
+
type: in-context-reinforcement-learning
|
201 |
+
name: In-Context Reinforcement Learning
|
202 |
+
dataset:
|
203 |
+
name: Meta-World
|
204 |
+
type: assembly-v2
|
205 |
+
metrics:
|
206 |
+
- type: total_reward
|
207 |
+
value: 307.08 +/- 25.20
|
208 |
+
name: Total reward
|
209 |
+
- type: normalized_total_reward
|
210 |
+
value: 1.04 +/- 0.10
|
211 |
+
name: Expert normalized total reward
|
212 |
+
- task:
|
213 |
+
type: in-context-reinforcement-learning
|
214 |
+
name: In-Context Reinforcement Learning
|
215 |
+
dataset:
|
216 |
+
name: Meta-World
|
217 |
+
type: basketball-v2
|
218 |
+
metrics:
|
219 |
+
- type: total_reward
|
220 |
+
value: 568.04 +/- 60.72
|
221 |
+
name: Total reward
|
222 |
+
- type: normalized_total_reward
|
223 |
+
value: 1.02 +/- 0.11
|
224 |
+
name: Expert normalized total reward
|
225 |
+
- task:
|
226 |
+
type: in-context-reinforcement-learning
|
227 |
+
name: In-Context Reinforcement Learning
|
228 |
+
dataset:
|
229 |
+
name: Meta-World
|
230 |
+
type: bin-picking-v2
|
231 |
+
metrics:
|
232 |
+
- type: total_reward
|
233 |
+
value: 7.88 +/- 4.28
|
234 |
+
name: Total reward
|
235 |
+
- type: normalized_total_reward
|
236 |
+
value: 0.01 +/- 0.01
|
237 |
+
name: Expert normalized total reward
|
238 |
+
- task:
|
239 |
+
type: in-context-reinforcement-learning
|
240 |
+
name: In-Context Reinforcement Learning
|
241 |
+
dataset:
|
242 |
+
name: Meta-World
|
243 |
+
type: box-close-v2
|
244 |
+
metrics:
|
245 |
+
- type: total_reward
|
246 |
+
value: 61.75 +/- 13.54
|
247 |
+
name: Total reward
|
248 |
+
- type: normalized_total_reward
|
249 |
+
value: -0.04 +/- 0.03
|
250 |
+
name: Expert normalized total reward
|
251 |
+
- task:
|
252 |
+
type: in-context-reinforcement-learning
|
253 |
+
name: In-Context Reinforcement Learning
|
254 |
+
dataset:
|
255 |
+
name: Meta-World
|
256 |
+
type: button-press-v2
|
257 |
+
metrics:
|
258 |
+
- type: total_reward
|
259 |
+
value: 624.67 +/- 42.77
|
260 |
+
name: Total reward
|
261 |
+
- type: normalized_total_reward
|
262 |
+
value: 0.97 +/- 0.07
|
263 |
+
name: Expert normalized total reward
|
264 |
+
- task:
|
265 |
+
type: in-context-reinforcement-learning
|
266 |
+
name: In-Context Reinforcement Learning
|
267 |
+
dataset:
|
268 |
+
name: Meta-World
|
269 |
+
type: button-press-topdown-v2
|
270 |
+
metrics:
|
271 |
+
- type: total_reward
|
272 |
+
value: 449.36 +/- 62.16
|
273 |
+
name: Total reward
|
274 |
+
- type: normalized_total_reward
|
275 |
+
value: 0.94 +/- 0.14
|
276 |
+
name: Expert normalized total reward
|
277 |
+
- task:
|
278 |
+
type: in-context-reinforcement-learning
|
279 |
+
name: In-Context Reinforcement Learning
|
280 |
+
dataset:
|
281 |
+
name: Meta-World
|
282 |
+
type: button-press-topdown-wall-v2
|
283 |
+
metrics:
|
284 |
+
- type: total_reward
|
285 |
+
value: 482.08 +/- 32.48
|
286 |
+
name: Total reward
|
287 |
+
- type: normalized_total_reward
|
288 |
+
value: 0.97 +/- 0.07
|
289 |
+
name: Expert normalized total reward
|
290 |
+
- task:
|
291 |
+
type: in-context-reinforcement-learning
|
292 |
+
name: In-Context Reinforcement Learning
|
293 |
+
dataset:
|
294 |
+
name: Meta-World
|
295 |
+
type: button-press-wall-v2
|
296 |
+
metrics:
|
297 |
+
- type: total_reward
|
298 |
+
value: 672.00 +/- 26.48
|
299 |
+
name: Total reward
|
300 |
+
- type: normalized_total_reward
|
301 |
+
value: 1.00 +/- 0.04
|
302 |
+
name: Expert normalized total reward
|
303 |
+
- task:
|
304 |
+
type: in-context-reinforcement-learning
|
305 |
+
name: In-Context Reinforcement Learning
|
306 |
+
dataset:
|
307 |
+
name: Meta-World
|
308 |
+
type: coffee-button-v2
|
309 |
+
metrics:
|
310 |
+
- type: total_reward
|
311 |
+
value: 719.00 +/- 41.10
|
312 |
+
name: Total reward
|
313 |
+
- type: normalized_total_reward
|
314 |
+
value: 1.00 +/- 0.06
|
315 |
+
name: Expert normalized total reward
|
316 |
+
- task:
|
317 |
+
type: in-context-reinforcement-learning
|
318 |
+
name: In-Context Reinforcement Learning
|
319 |
+
dataset:
|
320 |
+
name: Meta-World
|
321 |
+
type: coffee-pull-v2
|
322 |
+
metrics:
|
323 |
+
- type: total_reward
|
324 |
+
value: 26.04 +/- 56.12
|
325 |
+
name: Total reward
|
326 |
+
- type: normalized_total_reward
|
327 |
+
value: 0.07 +/- 0.20
|
328 |
+
name: Expert normalized total reward
|
329 |
+
- task:
|
330 |
+
type: in-context-reinforcement-learning
|
331 |
+
name: In-Context Reinforcement Learning
|
332 |
+
dataset:
|
333 |
+
name: Meta-World
|
334 |
+
type: coffee-push-v2
|
335 |
+
metrics:
|
336 |
+
- type: total_reward
|
337 |
+
value: 571.01 +/- 112.28
|
338 |
+
name: Total reward
|
339 |
+
- type: normalized_total_reward
|
340 |
+
value: 1.01 +/- 0.20
|
341 |
+
name: Expert normalized total reward
|
342 |
+
- task:
|
343 |
+
type: in-context-reinforcement-learning
|
344 |
+
name: In-Context Reinforcement Learning
|
345 |
+
dataset:
|
346 |
+
name: Meta-World
|
347 |
+
type: dial-turn-v2
|
348 |
+
metrics:
|
349 |
+
- type: total_reward
|
350 |
+
value: 783.90 +/- 53.17
|
351 |
+
name: Total reward
|
352 |
+
- type: normalized_total_reward
|
353 |
+
value: 0.99 +/- 0.07
|
354 |
+
name: Expert normalized total reward
|
355 |
+
- task:
|
356 |
+
type: in-context-reinforcement-learning
|
357 |
+
name: In-Context Reinforcement Learning
|
358 |
+
dataset:
|
359 |
+
name: Meta-World
|
360 |
+
type: disassemble-v2
|
361 |
+
metrics:
|
362 |
+
- type: total_reward
|
363 |
+
value: 523.60 +/- 58.15
|
364 |
+
name: Total reward
|
365 |
+
- type: normalized_total_reward
|
366 |
+
value: 1.00 +/- 0.12
|
367 |
+
name: Expert normalized total reward
|
368 |
+
- task:
|
369 |
+
type: in-context-reinforcement-learning
|
370 |
+
name: In-Context Reinforcement Learning
|
371 |
+
dataset:
|
372 |
+
name: Meta-World
|
373 |
+
type: door-close-v2
|
374 |
+
metrics:
|
375 |
+
- type: total_reward
|
376 |
+
value: 538.10 +/- 25.76
|
377 |
+
name: Total reward
|
378 |
+
- type: normalized_total_reward
|
379 |
+
value: 1.02 +/- 0.05
|
380 |
+
name: Expert normalized total reward
|
381 |
+
- task:
|
382 |
+
type: in-context-reinforcement-learning
|
383 |
+
name: In-Context Reinforcement Learning
|
384 |
+
dataset:
|
385 |
+
name: Meta-World
|
386 |
+
type: door-lock-v2
|
387 |
+
metrics:
|
388 |
+
- type: total_reward
|
389 |
+
value: 356.51 +/- 249.44
|
390 |
+
name: Total reward
|
391 |
+
- type: normalized_total_reward
|
392 |
+
value: 0.35 +/- 0.36
|
393 |
+
name: Expert normalized total reward
|
394 |
+
- task:
|
395 |
+
type: in-context-reinforcement-learning
|
396 |
+
name: In-Context Reinforcement Learning
|
397 |
+
dataset:
|
398 |
+
name: Meta-World
|
399 |
+
type: door-open-v2
|
400 |
+
metrics:
|
401 |
+
- type: total_reward
|
402 |
+
value: 581.33 +/- 26.33
|
403 |
+
name: Total reward
|
404 |
+
- type: normalized_total_reward
|
405 |
+
value: 0.99 +/- 0.05
|
406 |
+
name: Expert normalized total reward
|
407 |
+
- task:
|
408 |
+
type: in-context-reinforcement-learning
|
409 |
+
name: In-Context Reinforcement Learning
|
410 |
+
dataset:
|
411 |
+
name: Meta-World
|
412 |
+
type: door-unlock-v2
|
413 |
+
metrics:
|
414 |
+
- type: total_reward
|
415 |
+
value: 352.86 +/- 147.78
|
416 |
+
name: Total reward
|
417 |
+
- type: normalized_total_reward
|
418 |
+
value: 0.21 +/- 0.26
|
419 |
+
name: Expert normalized total reward
|
420 |
+
- task:
|
421 |
+
type: in-context-reinforcement-learning
|
422 |
+
name: In-Context Reinforcement Learning
|
423 |
+
dataset:
|
424 |
+
name: Meta-World
|
425 |
+
type: drawer-close-v2
|
426 |
+
metrics:
|
427 |
+
- type: total_reward
|
428 |
+
value: 838.88 +/- 7.41
|
429 |
+
name: Total reward
|
430 |
+
- type: normalized_total_reward
|
431 |
+
value: 0.96 +/- 0.01
|
432 |
+
name: Expert normalized total reward
|
433 |
+
- task:
|
434 |
+
type: in-context-reinforcement-learning
|
435 |
+
name: In-Context Reinforcement Learning
|
436 |
+
dataset:
|
437 |
+
name: Meta-World
|
438 |
+
type: drawer-open-v2
|
439 |
+
metrics:
|
440 |
+
- type: total_reward
|
441 |
+
value: 493.00 +/- 3.57
|
442 |
+
name: Total reward
|
443 |
+
- type: normalized_total_reward
|
444 |
+
value: 1.00 +/- 0.01
|
445 |
+
name: Expert normalized total reward
|
446 |
+
- task:
|
447 |
+
type: in-context-reinforcement-learning
|
448 |
+
name: In-Context Reinforcement Learning
|
449 |
+
dataset:
|
450 |
+
name: Meta-World
|
451 |
+
type: faucet-close-v2
|
452 |
+
metrics:
|
453 |
+
- type: total_reward
|
454 |
+
value: 749.46 +/- 14.83
|
455 |
+
name: Total reward
|
456 |
+
- type: normalized_total_reward
|
457 |
+
value: 0.99 +/- 0.03
|
458 |
+
name: Expert normalized total reward
|
459 |
+
- task:
|
460 |
+
type: in-context-reinforcement-learning
|
461 |
+
name: In-Context Reinforcement Learning
|
462 |
+
dataset:
|
463 |
+
name: Meta-World
|
464 |
+
type: faucet-open-v2
|
465 |
+
metrics:
|
466 |
+
- type: total_reward
|
467 |
+
value: 732.47 +/- 15.23
|
468 |
+
name: Total reward
|
469 |
+
- type: normalized_total_reward
|
470 |
+
value: 0.97 +/- 0.03
|
471 |
+
name: Expert normalized total reward
|
472 |
+
- task:
|
473 |
+
type: in-context-reinforcement-learning
|
474 |
+
name: In-Context Reinforcement Learning
|
475 |
+
dataset:
|
476 |
+
name: Meta-World
|
477 |
+
type: hammer-v2
|
478 |
+
metrics:
|
479 |
+
- type: total_reward
|
480 |
+
value: 669.31 +/- 69.56
|
481 |
+
name: Total reward
|
482 |
+
- type: normalized_total_reward
|
483 |
+
value: 0.97 +/- 0.12
|
484 |
+
name: Expert normalized total reward
|
485 |
+
- task:
|
486 |
+
type: in-context-reinforcement-learning
|
487 |
+
name: In-Context Reinforcement Learning
|
488 |
+
dataset:
|
489 |
+
name: Meta-World
|
490 |
+
type: hand-insert-v2
|
491 |
+
metrics:
|
492 |
+
- type: total_reward
|
493 |
+
value: 142.81 +/- 146.64
|
494 |
+
name: Total reward
|
495 |
+
- type: normalized_total_reward
|
496 |
+
value: 0.19 +/- 0.20
|
497 |
+
name: Expert normalized total reward
|
498 |
+
- task:
|
499 |
+
type: in-context-reinforcement-learning
|
500 |
+
name: In-Context Reinforcement Learning
|
501 |
+
dataset:
|
502 |
+
name: Meta-World
|
503 |
+
type: handle-press-v2
|
504 |
+
metrics:
|
505 |
+
- type: total_reward
|
506 |
+
value: 835.30 +/- 114.19
|
507 |
+
name: Total reward
|
508 |
+
- type: normalized_total_reward
|
509 |
+
value: 1.00 +/- 0.15
|
510 |
+
name: Expert normalized total reward
|
511 |
+
- task:
|
512 |
+
type: in-context-reinforcement-learning
|
513 |
+
name: In-Context Reinforcement Learning
|
514 |
+
dataset:
|
515 |
+
name: Meta-World
|
516 |
+
type: handle-press-side-v2
|
517 |
+
metrics:
|
518 |
+
- type: total_reward
|
519 |
+
value: 852.96 +/- 16.08
|
520 |
+
name: Total reward
|
521 |
+
- type: normalized_total_reward
|
522 |
+
value: 0.99 +/- 0.02
|
523 |
+
name: Expert normalized total reward
|
524 |
+
- task:
|
525 |
+
type: in-context-reinforcement-learning
|
526 |
+
name: In-Context Reinforcement Learning
|
527 |
+
dataset:
|
528 |
+
name: Meta-World
|
529 |
+
type: handle-pull-v2
|
530 |
+
metrics:
|
531 |
+
- type: total_reward
|
532 |
+
value: 701.10 +/- 13.82
|
533 |
+
name: Total reward
|
534 |
+
- type: normalized_total_reward
|
535 |
+
value: 1.00 +/- 0.02
|
536 |
+
name: Expert normalized total reward
|
537 |
+
- task:
|
538 |
+
type: in-context-reinforcement-learning
|
539 |
+
name: In-Context Reinforcement Learning
|
540 |
+
dataset:
|
541 |
+
name: Meta-World
|
542 |
+
type: handle-pull-side-v2
|
543 |
+
metrics:
|
544 |
+
- type: total_reward
|
545 |
+
value: 493.10 +/- 53.65
|
546 |
+
name: Total reward
|
547 |
+
- type: normalized_total_reward
|
548 |
+
value: 1.00 +/- 0.11
|
549 |
+
name: Expert normalized total reward
|
550 |
+
- task:
|
551 |
+
type: in-context-reinforcement-learning
|
552 |
+
name: In-Context Reinforcement Learning
|
553 |
+
dataset:
|
554 |
+
name: Meta-World
|
555 |
+
type: lever-pull-v2
|
556 |
+
metrics:
|
557 |
+
- type: total_reward
|
558 |
+
value: 548.72 +/- 81.12
|
559 |
+
name: Total reward
|
560 |
+
- type: normalized_total_reward
|
561 |
+
value: 0.96 +/- 0.16
|
562 |
+
name: Expert normalized total reward
|
563 |
+
- task:
|
564 |
+
type: in-context-reinforcement-learning
|
565 |
+
name: In-Context Reinforcement Learning
|
566 |
+
dataset:
|
567 |
+
name: Meta-World
|
568 |
+
type: peg-insert-side-v2
|
569 |
+
metrics:
|
570 |
+
- type: total_reward
|
571 |
+
value: 352.43 +/- 137.24
|
572 |
+
name: Total reward
|
573 |
+
- type: normalized_total_reward
|
574 |
+
value: 1.01 +/- 0.40
|
575 |
+
name: Expert normalized total reward
|
576 |
+
- task:
|
577 |
+
type: in-context-reinforcement-learning
|
578 |
+
name: In-Context Reinforcement Learning
|
579 |
+
dataset:
|
580 |
+
name: Meta-World
|
581 |
+
type: peg-unplug-side-v2
|
582 |
+
metrics:
|
583 |
+
- type: total_reward
|
584 |
+
value: 401.52 +/- 175.27
|
585 |
+
name: Total reward
|
586 |
+
- type: normalized_total_reward
|
587 |
+
value: 0.75 +/- 0.34
|
588 |
+
name: Expert normalized total reward
|
589 |
+
- task:
|
590 |
+
type: in-context-reinforcement-learning
|
591 |
+
name: In-Context Reinforcement Learning
|
592 |
+
dataset:
|
593 |
+
name: Meta-World
|
594 |
+
type: pick-out-of-hole-v2
|
595 |
+
metrics:
|
596 |
+
- type: total_reward
|
597 |
+
value: 364.20 +/- 79.56
|
598 |
+
name: Total reward
|
599 |
+
- type: normalized_total_reward
|
600 |
+
value: 0.91 +/- 0.20
|
601 |
+
name: Expert normalized total reward
|
602 |
+
- task:
|
603 |
+
type: in-context-reinforcement-learning
|
604 |
+
name: In-Context Reinforcement Learning
|
605 |
+
dataset:
|
606 |
+
name: Meta-World
|
607 |
+
type: pick-place-v2
|
608 |
+
metrics:
|
609 |
+
- type: total_reward
|
610 |
+
value: 414.02 +/- 91.10
|
611 |
+
name: Total reward
|
612 |
+
- type: normalized_total_reward
|
613 |
+
value: 0.98 +/- 0.22
|
614 |
+
name: Expert normalized total reward
|
615 |
+
- task:
|
616 |
+
type: in-context-reinforcement-learning
|
617 |
+
name: In-Context Reinforcement Learning
|
618 |
+
dataset:
|
619 |
+
name: Meta-World
|
620 |
+
type: pick-place-wall-v2
|
621 |
+
metrics:
|
622 |
+
- type: total_reward
|
623 |
+
value: 553.18 +/- 84.72
|
624 |
+
name: Total reward
|
625 |
+
- type: normalized_total_reward
|
626 |
+
value: 1.04 +/- 0.16
|
627 |
+
name: Expert normalized total reward
|
628 |
+
- task:
|
629 |
+
type: in-context-reinforcement-learning
|
630 |
+
name: In-Context Reinforcement Learning
|
631 |
+
dataset:
|
632 |
+
name: Meta-World
|
633 |
+
type: plate-slide-v2
|
634 |
+
metrics:
|
635 |
+
- type: total_reward
|
636 |
+
value: 531.98 +/- 156.94
|
637 |
+
name: Total reward
|
638 |
+
- type: normalized_total_reward
|
639 |
+
value: 0.99 +/- 0.34
|
640 |
+
name: Expert normalized total reward
|
641 |
+
- task:
|
642 |
+
type: in-context-reinforcement-learning
|
643 |
+
name: In-Context Reinforcement Learning
|
644 |
+
dataset:
|
645 |
+
name: Meta-World
|
646 |
+
type: plate-slide-back-v2
|
647 |
+
metrics:
|
648 |
+
- type: total_reward
|
649 |
+
value: 703.93 +/- 108.27
|
650 |
+
name: Total reward
|
651 |
+
- type: normalized_total_reward
|
652 |
+
value: 0.99 +/- 0.16
|
653 |
+
name: Expert normalized total reward
|
654 |
+
- task:
|
655 |
+
type: in-context-reinforcement-learning
|
656 |
+
name: In-Context Reinforcement Learning
|
657 |
+
dataset:
|
658 |
+
name: Meta-World
|
659 |
+
type: plate-slide-back-side-v2
|
660 |
+
metrics:
|
661 |
+
- type: total_reward
|
662 |
+
value: 721.29 +/- 62.15
|
663 |
+
name: Total reward
|
664 |
+
- type: normalized_total_reward
|
665 |
+
value: 0.99 +/- 0.09
|
666 |
+
name: Expert normalized total reward
|
667 |
+
- task:
|
668 |
+
type: in-context-reinforcement-learning
|
669 |
+
name: In-Context Reinforcement Learning
|
670 |
+
dataset:
|
671 |
+
name: Meta-World
|
672 |
+
type: plate-slide-side-v2
|
673 |
+
metrics:
|
674 |
+
- type: total_reward
|
675 |
+
value: 578.24 +/- 143.73
|
676 |
+
name: Total reward
|
677 |
+
- type: normalized_total_reward
|
678 |
+
value: 0.83 +/- 0.22
|
679 |
+
name: Expert normalized total reward
|
680 |
+
- task:
|
681 |
+
type: in-context-reinforcement-learning
|
682 |
+
name: In-Context Reinforcement Learning
|
683 |
+
dataset:
|
684 |
+
name: Meta-World
|
685 |
+
type: push-v2
|
686 |
+
metrics:
|
687 |
+
- type: total_reward
|
688 |
+
value: 729.33 +/- 104.40
|
689 |
+
name: Total reward
|
690 |
+
- type: normalized_total_reward
|
691 |
+
value: 0.97 +/- 0.14
|
692 |
+
name: Expert normalized total reward
|
693 |
+
- task:
|
694 |
+
type: in-context-reinforcement-learning
|
695 |
+
name: In-Context Reinforcement Learning
|
696 |
+
dataset:
|
697 |
+
name: Meta-World
|
698 |
+
type: push-back-v2
|
699 |
+
metrics:
|
700 |
+
- type: total_reward
|
701 |
+
value: 372.16 +/- 112.75
|
702 |
+
name: Total reward
|
703 |
+
- type: normalized_total_reward
|
704 |
+
value: 0.95 +/- 0.29
|
705 |
+
name: Expert normalized total reward
|
706 |
+
- task:
|
707 |
+
type: in-context-reinforcement-learning
|
708 |
+
name: In-Context Reinforcement Learning
|
709 |
+
dataset:
|
710 |
+
name: Meta-World
|
711 |
+
type: push-wall-v2
|
712 |
+
metrics:
|
713 |
+
- type: total_reward
|
714 |
+
value: 741.68 +/- 14.84
|
715 |
+
name: Total reward
|
716 |
+
- type: normalized_total_reward
|
717 |
+
value: 0.99 +/- 0.02
|
718 |
+
name: Expert normalized total reward
|
719 |
+
- task:
|
720 |
+
type: in-context-reinforcement-learning
|
721 |
+
name: In-Context Reinforcement Learning
|
722 |
+
dataset:
|
723 |
+
name: Meta-World
|
724 |
+
type: reach-v2
|
725 |
+
metrics:
|
726 |
+
- type: total_reward
|
727 |
+
value: 684.45 +/- 136.55
|
728 |
+
name: Total reward
|
729 |
+
- type: normalized_total_reward
|
730 |
+
value: 1.01 +/- 0.26
|
731 |
+
name: Expert normalized total reward
|
732 |
+
- task:
|
733 |
+
type: in-context-reinforcement-learning
|
734 |
+
name: In-Context Reinforcement Learning
|
735 |
+
dataset:
|
736 |
+
name: Meta-World
|
737 |
+
type: reach-wall-v2
|
738 |
+
metrics:
|
739 |
+
- type: total_reward
|
740 |
+
value: 738.02 +/- 100.96
|
741 |
+
name: Total reward
|
742 |
+
- type: normalized_total_reward
|
743 |
+
value: 0.98 +/- 0.17
|
744 |
+
name: Expert normalized total reward
|
745 |
+
- task:
|
746 |
+
type: in-context-reinforcement-learning
|
747 |
+
name: In-Context Reinforcement Learning
|
748 |
+
dataset:
|
749 |
+
name: Meta-World
|
750 |
+
type: shelf-place-v2
|
751 |
+
metrics:
|
752 |
+
- type: total_reward
|
753 |
+
value: 268.34 +/- 29.07
|
754 |
+
name: Total reward
|
755 |
+
- type: normalized_total_reward
|
756 |
+
value: 1.01 +/- 0.11
|
757 |
+
name: Expert normalized total reward
|
758 |
+
- task:
|
759 |
+
type: in-context-reinforcement-learning
|
760 |
+
name: In-Context Reinforcement Learning
|
761 |
+
dataset:
|
762 |
+
name: Meta-World
|
763 |
+
type: soccer-v2
|
764 |
+
metrics:
|
765 |
+
- type: total_reward
|
766 |
+
value: 438.44 +/- 189.63
|
767 |
+
name: Total reward
|
768 |
+
- type: normalized_total_reward
|
769 |
+
value: 0.80 +/- 0.35
|
770 |
+
name: Expert normalized total reward
|
771 |
+
- task:
|
772 |
+
type: in-context-reinforcement-learning
|
773 |
+
name: In-Context Reinforcement Learning
|
774 |
+
dataset:
|
775 |
+
name: Meta-World
|
776 |
+
type: stick-pull-v2
|
777 |
+
metrics:
|
778 |
+
- type: total_reward
|
779 |
+
value: 483.98 +/- 83.25
|
780 |
+
name: Total reward
|
781 |
+
- type: normalized_total_reward
|
782 |
+
value: 0.92 +/- 0.16
|
783 |
+
name: Expert normalized total reward
|
784 |
+
- task:
|
785 |
+
type: in-context-reinforcement-learning
|
786 |
+
name: In-Context Reinforcement Learning
|
787 |
+
dataset:
|
788 |
+
name: Meta-World
|
789 |
+
type: stick-push-v2
|
790 |
+
metrics:
|
791 |
+
- type: total_reward
|
792 |
+
value: 563.07 +/- 173.40
|
793 |
+
name: Total reward
|
794 |
+
- type: normalized_total_reward
|
795 |
+
value: 0.90 +/- 0.28
|
796 |
+
name: Expert normalized total reward
|
797 |
+
- task:
|
798 |
+
type: in-context-reinforcement-learning
|
799 |
+
name: In-Context Reinforcement Learning
|
800 |
+
dataset:
|
801 |
+
name: Meta-World
|
802 |
+
type: sweep-v2
|
803 |
+
metrics:
|
804 |
+
- type: total_reward
|
805 |
+
value: 487.19 +/- 60.02
|
806 |
+
name: Total reward
|
807 |
+
- type: normalized_total_reward
|
808 |
+
value: 0.94 +/- 0.12
|
809 |
+
name: Expert normalized total reward
|
810 |
+
- task:
|
811 |
+
type: in-context-reinforcement-learning
|
812 |
+
name: In-Context Reinforcement Learning
|
813 |
+
dataset:
|
814 |
+
name: Meta-World
|
815 |
+
type: sweep-into-v2
|
816 |
+
metrics:
|
817 |
+
- type: total_reward
|
818 |
+
value: 798.80 +/- 15.62
|
819 |
+
name: Total reward
|
820 |
+
- type: normalized_total_reward
|
821 |
+
value: 1.00 +/- 0.02
|
822 |
+
name: Expert normalized total reward
|
823 |
+
- task:
|
824 |
+
type: in-context-reinforcement-learning
|
825 |
+
name: In-Context Reinforcement Learning
|
826 |
+
dataset:
|
827 |
+
name: Meta-World
|
828 |
+
type: window-close-v2
|
829 |
+
metrics:
|
830 |
+
- type: total_reward
|
831 |
+
value: 562.48 +/- 91.17
|
832 |
+
name: Total reward
|
833 |
+
- type: normalized_total_reward
|
834 |
+
value: 0.95 +/- 0.17
|
835 |
+
name: Expert normalized total reward
|
836 |
+
- task:
|
837 |
+
type: in-context-reinforcement-learning
|
838 |
+
name: In-Context Reinforcement Learning
|
839 |
+
dataset:
|
840 |
+
name: Meta-World
|
841 |
+
type: window-open-v2
|
842 |
+
metrics:
|
843 |
+
- type: total_reward
|
844 |
+
value: 573.69 +/- 93.98
|
845 |
+
name: Total reward
|
846 |
+
- type: normalized_total_reward
|
847 |
+
value: 0.96 +/- 0.17
|
848 |
+
name: Expert normalized total reward
|
849 |
+
- task:
|
850 |
+
type: in-context-reinforcement-learning
|
851 |
+
name: In-Context Reinforcement Learning
|
852 |
+
dataset:
|
853 |
+
name: Bi-DexHands
|
854 |
+
type: shadowhandblockstack
|
855 |
+
metrics:
|
856 |
+
- type: total_reward
|
857 |
+
value: 347.40 +/- 50.60
|
858 |
+
name: Total reward
|
859 |
+
- type: normalized_total_reward
|
860 |
+
value: 1.17 +/- 0.23
|
861 |
+
name: Expert normalized total reward
|
862 |
+
- task:
|
863 |
+
type: in-context-reinforcement-learning
|
864 |
+
name: In-Context Reinforcement Learning
|
865 |
+
dataset:
|
866 |
+
name: Bi-DexHands
|
867 |
+
type: shadowhandbottlecap
|
868 |
+
metrics:
|
869 |
+
- type: total_reward
|
870 |
+
value: 338.25 +/- 81.25
|
871 |
+
name: Total reward
|
872 |
+
- type: normalized_total_reward
|
873 |
+
value: 0.81 +/- 0.25
|
874 |
+
name: Expert normalized total reward
|
875 |
+
- task:
|
876 |
+
type: in-context-reinforcement-learning
|
877 |
+
name: In-Context Reinforcement Learning
|
878 |
+
dataset:
|
879 |
+
name: Bi-DexHands
|
880 |
+
type: shadowhandcatchabreast
|
881 |
+
metrics:
|
882 |
+
- type: total_reward
|
883 |
+
value: 11.81 +/- 21.28
|
884 |
+
name: Total reward
|
885 |
+
- type: normalized_total_reward
|
886 |
+
value: 0.17 +/- 0.32
|
887 |
+
name: Expert normalized total reward
|
888 |
+
- task:
|
889 |
+
type: in-context-reinforcement-learning
|
890 |
+
name: In-Context Reinforcement Learning
|
891 |
+
dataset:
|
892 |
+
name: Bi-DexHands
|
893 |
+
type: shadowhandcatchover2underarm
|
894 |
+
metrics:
|
895 |
+
- type: total_reward
|
896 |
+
value: 31.60 +/- 7.20
|
897 |
+
name: Total reward
|
898 |
+
- type: normalized_total_reward
|
899 |
+
value: 0.92 +/- 0.24
|
900 |
+
name: Expert normalized total reward
|
901 |
+
- task:
|
902 |
+
type: in-context-reinforcement-learning
|
903 |
+
name: In-Context Reinforcement Learning
|
904 |
+
dataset:
|
905 |
+
name: Bi-DexHands
|
906 |
+
type: shadowhandcatchunderarm
|
907 |
+
metrics:
|
908 |
+
- type: total_reward
|
909 |
+
value: 18.21 +/- 9.46
|
910 |
+
name: Total reward
|
911 |
+
- type: normalized_total_reward
|
912 |
+
value: 0.72 +/- 0.39
|
913 |
+
name: Expert normalized total reward
|
914 |
+
- task:
|
915 |
+
type: in-context-reinforcement-learning
|
916 |
+
name: In-Context Reinforcement Learning
|
917 |
+
dataset:
|
918 |
+
name: Bi-DexHands
|
919 |
+
type: shadowhanddoorcloseinward
|
920 |
+
metrics:
|
921 |
+
- type: total_reward
|
922 |
+
value: 3.97 +/- 0.15
|
923 |
+
name: Total reward
|
924 |
+
- type: normalized_total_reward
|
925 |
+
value: 0.36 +/- 0.02
|
926 |
+
name: Expert normalized total reward
|
927 |
+
- task:
|
928 |
+
type: in-context-reinforcement-learning
|
929 |
+
name: In-Context Reinforcement Learning
|
930 |
+
dataset:
|
931 |
+
name: Bi-DexHands
|
932 |
+
type: shadowhanddoorcloseoutward
|
933 |
+
metrics:
|
934 |
+
- type: total_reward
|
935 |
+
value: 358.50 +/- 4.50
|
936 |
+
name: Total reward
|
937 |
+
- type: normalized_total_reward
|
938 |
+
value: -1.27 +/- 0.01
|
939 |
+
name: Expert normalized total reward
|
940 |
+
- task:
|
941 |
+
type: in-context-reinforcement-learning
|
942 |
+
name: In-Context Reinforcement Learning
|
943 |
+
dataset:
|
944 |
+
name: Bi-DexHands
|
945 |
+
type: shadowhanddooropeninward
|
946 |
+
metrics:
|
947 |
+
- type: total_reward
|
948 |
+
value: 108.25 +/- 8.50
|
949 |
+
name: Total reward
|
950 |
+
- type: normalized_total_reward
|
951 |
+
value: 0.29 +/- 0.02
|
952 |
+
name: Expert normalized total reward
|
953 |
+
- task:
|
954 |
+
type: in-context-reinforcement-learning
|
955 |
+
name: In-Context Reinforcement Learning
|
956 |
+
dataset:
|
957 |
+
name: Bi-DexHands
|
958 |
+
type: shadowhanddooropenoutward
|
959 |
+
metrics:
|
960 |
+
- type: total_reward
|
961 |
+
value: 83.65 +/- 12.10
|
962 |
+
name: Total reward
|
963 |
+
- type: normalized_total_reward
|
964 |
+
value: 0.13 +/- 0.02
|
965 |
+
name: Expert normalized total reward
|
966 |
+
- task:
|
967 |
+
type: in-context-reinforcement-learning
|
968 |
+
name: In-Context Reinforcement Learning
|
969 |
+
dataset:
|
970 |
+
name: Bi-DexHands
|
971 |
+
type: shadowhandgraspandplace
|
972 |
+
metrics:
|
973 |
+
- type: total_reward
|
974 |
+
value: 485.15 +/- 89.10
|
975 |
+
name: Total reward
|
976 |
+
- type: normalized_total_reward
|
977 |
+
value: 0.97 +/- 0.18
|
978 |
+
name: Expert normalized total reward
|
979 |
+
- task:
|
980 |
+
type: in-context-reinforcement-learning
|
981 |
+
name: In-Context Reinforcement Learning
|
982 |
+
dataset:
|
983 |
+
name: Bi-DexHands
|
984 |
+
type: shadowhandkettle
|
985 |
+
metrics:
|
986 |
+
- type: total_reward
|
987 |
+
value: -450.47 +/- 0.00
|
988 |
+
name: Total reward
|
989 |
+
- type: normalized_total_reward
|
990 |
+
value: -0.99 +/- 0.00
|
991 |
+
name: Expert normalized total reward
|
992 |
+
- task:
|
993 |
+
type: in-context-reinforcement-learning
|
994 |
+
name: In-Context Reinforcement Learning
|
995 |
+
dataset:
|
996 |
+
name: Bi-DexHands
|
997 |
+
type: shadowhandliftunderarm
|
998 |
+
metrics:
|
999 |
+
- type: total_reward
|
1000 |
+
value: 377.92 +/- 13.24
|
1001 |
+
name: Total reward
|
1002 |
+
- type: normalized_total_reward
|
1003 |
+
value: 0.95 +/- 0.03
|
1004 |
+
name: Expert normalized total reward
|
1005 |
+
- task:
|
1006 |
+
type: in-context-reinforcement-learning
|
1007 |
+
name: In-Context Reinforcement Learning
|
1008 |
+
dataset:
|
1009 |
+
name: Bi-DexHands
|
1010 |
+
type: shadowhandover
|
1011 |
+
metrics:
|
1012 |
+
- type: total_reward
|
1013 |
+
value: 33.01 +/- 0.96
|
1014 |
+
name: Total reward
|
1015 |
+
- type: normalized_total_reward
|
1016 |
+
value: 0.95 +/- 0.03
|
1017 |
+
name: Expert normalized total reward
|
1018 |
+
- task:
|
1019 |
+
type: in-context-reinforcement-learning
|
1020 |
+
name: In-Context Reinforcement Learning
|
1021 |
+
dataset:
|
1022 |
+
name: Bi-DexHands
|
1023 |
+
type: shadowhandpen
|
1024 |
+
metrics:
|
1025 |
+
- type: total_reward
|
1026 |
+
value: 98.80 +/- 83.60
|
1027 |
+
name: Total reward
|
1028 |
+
- type: normalized_total_reward
|
1029 |
+
value: 0.52 +/- 0.44
|
1030 |
+
name: Expert normalized total reward
|
1031 |
+
- task:
|
1032 |
+
type: in-context-reinforcement-learning
|
1033 |
+
name: In-Context Reinforcement Learning
|
1034 |
+
dataset:
|
1035 |
+
name: Bi-DexHands
|
1036 |
+
type: shadowhandpushblock
|
1037 |
+
metrics:
|
1038 |
+
- type: total_reward
|
1039 |
+
value: 445.60 +/- 2.20
|
1040 |
+
name: Total reward
|
1041 |
+
- type: normalized_total_reward
|
1042 |
+
value: 0.98 +/- 0.01
|
1043 |
+
name: Expert normalized total reward
|
1044 |
+
- task:
|
1045 |
+
type: in-context-reinforcement-learning
|
1046 |
+
name: In-Context Reinforcement Learning
|
1047 |
+
dataset:
|
1048 |
+
name: Bi-DexHands
|
1049 |
+
type: shadowhandreorientation
|
1050 |
+
metrics:
|
1051 |
+
- type: total_reward
|
1052 |
+
value: 2798.00 +/- 2112.00
|
1053 |
+
name: Total reward
|
1054 |
+
- type: normalized_total_reward
|
1055 |
+
value: 0.89 +/- 0.66
|
1056 |
+
name: Expert normalized total reward
|
1057 |
+
- task:
|
1058 |
+
type: in-context-reinforcement-learning
|
1059 |
+
name: In-Context Reinforcement Learning
|
1060 |
+
dataset:
|
1061 |
+
name: Bi-DexHands
|
1062 |
+
type: shadowhandscissors
|
1063 |
+
metrics:
|
1064 |
+
- type: total_reward
|
1065 |
+
value: 747.95 +/- 7.65
|
1066 |
+
name: Total reward
|
1067 |
+
- type: normalized_total_reward
|
1068 |
+
value: 1.03 +/- 0.01
|
1069 |
+
name: Expert normalized total reward
|
1070 |
+
- task:
|
1071 |
+
type: in-context-reinforcement-learning
|
1072 |
+
name: In-Context Reinforcement Learning
|
1073 |
+
dataset:
|
1074 |
+
name: Bi-DexHands
|
1075 |
+
type: shadowhandswingcup
|
1076 |
+
metrics:
|
1077 |
+
- type: total_reward
|
1078 |
+
value: 3775.50 +/- 583.70
|
1079 |
+
name: Total reward
|
1080 |
+
- type: normalized_total_reward
|
1081 |
+
value: 0.95 +/- 0.13
|
1082 |
+
name: Expert normalized total reward
|
1083 |
+
- task:
|
1084 |
+
type: in-context-reinforcement-learning
|
1085 |
+
name: In-Context Reinforcement Learning
|
1086 |
+
dataset:
|
1087 |
+
name: Bi-DexHands
|
1088 |
+
type: shadowhandswitch
|
1089 |
+
metrics:
|
1090 |
+
- type: total_reward
|
1091 |
+
value: 268.25 +/- 2.35
|
1092 |
+
name: Total reward
|
1093 |
+
- type: normalized_total_reward
|
1094 |
+
value: 0.95 +/- 0.01
|
1095 |
+
name: Expert normalized total reward
|
1096 |
+
- task:
|
1097 |
+
type: in-context-reinforcement-learning
|
1098 |
+
name: In-Context Reinforcement Learning
|
1099 |
+
dataset:
|
1100 |
+
name: Bi-DexHands
|
1101 |
+
type: shadowhandtwocatchunderarm
|
1102 |
+
metrics:
|
1103 |
+
- type: total_reward
|
1104 |
+
value: 2.17 +/- 0.67
|
1105 |
+
name: Total reward
|
1106 |
+
- type: normalized_total_reward
|
1107 |
+
value: 0.03 +/- 0.03
|
1108 |
+
name: Expert normalized total reward
|
1109 |
+
- task:
|
1110 |
+
type: in-context-reinforcement-learning
|
1111 |
+
name: In-Context Reinforcement Learning
|
1112 |
+
dataset:
|
1113 |
+
name: Industrial-Benchmark
|
1114 |
+
type: industrial-benchmark-0-v1
|
1115 |
+
metrics:
|
1116 |
+
- type: total_reward
|
1117 |
+
value: -191.39 +/- 22.96
|
1118 |
+
name: Total reward
|
1119 |
+
- type: normalized_total_reward
|
1120 |
+
value: 0.94 +/- 0.13
|
1121 |
+
name: Expert normalized total reward
|
1122 |
+
- task:
|
1123 |
+
type: in-context-reinforcement-learning
|
1124 |
+
name: In-Context Reinforcement Learning
|
1125 |
+
dataset:
|
1126 |
+
name: Industrial-Benchmark
|
1127 |
+
type: industrial-benchmark-5-v1
|
1128 |
+
metrics:
|
1129 |
+
- type: total_reward
|
1130 |
+
value: -194.01 +/- 3.66
|
1131 |
+
name: Total reward
|
1132 |
+
- type: normalized_total_reward
|
1133 |
+
value: 1.00 +/- 0.02
|
1134 |
+
name: Expert normalized total reward
|
1135 |
+
- task:
|
1136 |
+
type: in-context-reinforcement-learning
|
1137 |
+
name: In-Context Reinforcement Learning
|
1138 |
+
dataset:
|
1139 |
+
name: Industrial-Benchmark
|
1140 |
+
type: industrial-benchmark-10-v1
|
1141 |
+
metrics:
|
1142 |
+
- type: total_reward
|
1143 |
+
value: -213.28 +/- 2.01
|
1144 |
+
name: Total reward
|
1145 |
+
- type: normalized_total_reward
|
1146 |
+
value: 1.01 +/- 0.01
|
1147 |
+
name: Expert normalized total reward
|
1148 |
+
- task:
|
1149 |
+
type: in-context-reinforcement-learning
|
1150 |
+
name: In-Context Reinforcement Learning
|
1151 |
+
dataset:
|
1152 |
+
name: Industrial-Benchmark
|
1153 |
+
type: industrial-benchmark-15-v1
|
1154 |
+
metrics:
|
1155 |
+
- type: total_reward
|
1156 |
+
value: -227.82 +/- 4.29
|
1157 |
+
name: Total reward
|
1158 |
+
- type: normalized_total_reward
|
1159 |
+
value: 1.01 +/- 0.02
|
1160 |
+
name: Expert normalized total reward
|
1161 |
+
- task:
|
1162 |
+
type: in-context-reinforcement-learning
|
1163 |
+
name: In-Context Reinforcement Learning
|
1164 |
+
dataset:
|
1165 |
+
name: Industrial-Benchmark
|
1166 |
+
type: industrial-benchmark-20-v1
|
1167 |
+
metrics:
|
1168 |
+
- type: total_reward
|
1169 |
+
value: -259.99 +/- 22.70
|
1170 |
+
name: Total reward
|
1171 |
+
- type: normalized_total_reward
|
1172 |
+
value: 0.95 +/- 0.11
|
1173 |
+
name: Expert normalized total reward
|
1174 |
+
- task:
|
1175 |
+
type: in-context-reinforcement-learning
|
1176 |
+
name: In-Context Reinforcement Learning
|
1177 |
+
dataset:
|
1178 |
+
name: Industrial-Benchmark
|
1179 |
+
type: industrial-benchmark-25-v1
|
1180 |
+
metrics:
|
1181 |
+
- type: total_reward
|
1182 |
+
value: -282.28 +/- 20.70
|
1183 |
+
name: Total reward
|
1184 |
+
- type: normalized_total_reward
|
1185 |
+
value: 0.95 +/- 0.11
|
1186 |
+
name: Expert normalized total reward
|
1187 |
+
- task:
|
1188 |
+
type: in-context-reinforcement-learning
|
1189 |
+
name: In-Context Reinforcement Learning
|
1190 |
+
dataset:
|
1191 |
+
name: Industrial-Benchmark
|
1192 |
+
type: industrial-benchmark-30-v1
|
1193 |
+
metrics:
|
1194 |
+
- type: total_reward
|
1195 |
+
value: -307.02 +/- 19.23
|
1196 |
+
name: Total reward
|
1197 |
+
- type: normalized_total_reward
|
1198 |
+
value: 0.90 +/- 0.10
|
1199 |
+
name: Expert normalized total reward
|
1200 |
+
- task:
|
1201 |
+
type: in-context-reinforcement-learning
|
1202 |
+
name: In-Context Reinforcement Learning
|
1203 |
+
dataset:
|
1204 |
+
name: Industrial-Benchmark
|
1205 |
+
type: industrial-benchmark-35-v1
|
1206 |
+
metrics:
|
1207 |
+
- type: total_reward
|
1208 |
+
value: -314.36 +/- 5.62
|
1209 |
+
name: Total reward
|
1210 |
+
- type: normalized_total_reward
|
1211 |
+
value: 1.00 +/- 0.03
|
1212 |
+
name: Expert normalized total reward
|
1213 |
+
- task:
|
1214 |
+
type: in-context-reinforcement-learning
|
1215 |
+
name: In-Context Reinforcement Learning
|
1216 |
+
dataset:
|
1217 |
+
name: Industrial-Benchmark
|
1218 |
+
type: industrial-benchmark-40-v1
|
1219 |
+
metrics:
|
1220 |
+
- type: total_reward
|
1221 |
+
value: -339.34 +/- 9.57
|
1222 |
+
name: Total reward
|
1223 |
+
- type: normalized_total_reward
|
1224 |
+
value: 0.99 +/- 0.05
|
1225 |
+
name: Expert normalized total reward
|
1226 |
+
- task:
|
1227 |
+
type: in-context-reinforcement-learning
|
1228 |
+
name: In-Context Reinforcement Learning
|
1229 |
+
dataset:
|
1230 |
+
name: Industrial-Benchmark
|
1231 |
+
type: industrial-benchmark-45-v1
|
1232 |
+
metrics:
|
1233 |
+
- type: total_reward
|
1234 |
+
value: -366.63 +/- 7.47
|
1235 |
+
name: Total reward
|
1236 |
+
- type: normalized_total_reward
|
1237 |
+
value: 0.97 +/- 0.04
|
1238 |
+
name: Expert normalized total reward
|
1239 |
+
- task:
|
1240 |
+
type: in-context-reinforcement-learning
|
1241 |
+
name: In-Context Reinforcement Learning
|
1242 |
+
dataset:
|
1243 |
+
name: Industrial-Benchmark
|
1244 |
+
type: industrial-benchmark-50-v1
|
1245 |
+
metrics:
|
1246 |
+
- type: total_reward
|
1247 |
+
value: -395.94 +/- 17.65
|
1248 |
+
name: Total reward
|
1249 |
+
- type: normalized_total_reward
|
1250 |
+
value: 0.91 +/- 0.09
|
1251 |
+
name: Expert normalized total reward
|
1252 |
+
- task:
|
1253 |
+
type: in-context-reinforcement-learning
|
1254 |
+
name: In-Context Reinforcement Learning
|
1255 |
+
dataset:
|
1256 |
+
name: Industrial-Benchmark
|
1257 |
+
type: industrial-benchmark-55-v1
|
1258 |
+
metrics:
|
1259 |
+
- type: total_reward
|
1260 |
+
value: -403.73 +/- 2.03
|
1261 |
+
name: Total reward
|
1262 |
+
- type: normalized_total_reward
|
1263 |
+
value: 0.99 +/- 0.01
|
1264 |
+
name: Expert normalized total reward
|
1265 |
+
- task:
|
1266 |
+
type: in-context-reinforcement-learning
|
1267 |
+
name: In-Context Reinforcement Learning
|
1268 |
+
dataset:
|
1269 |
+
name: Industrial-Benchmark
|
1270 |
+
type: industrial-benchmark-60-v1
|
1271 |
+
metrics:
|
1272 |
+
- type: total_reward
|
1273 |
+
value: -434.25 +/- 4.12
|
1274 |
+
name: Total reward
|
1275 |
+
- type: normalized_total_reward
|
1276 |
+
value: 0.98 +/- 0.02
|
1277 |
+
name: Expert normalized total reward
|
1278 |
+
- task:
|
1279 |
+
type: in-context-reinforcement-learning
|
1280 |
+
name: In-Context Reinforcement Learning
|
1281 |
+
dataset:
|
1282 |
+
name: Industrial-Benchmark
|
1283 |
+
type: industrial-benchmark-65-v1
|
1284 |
+
metrics:
|
1285 |
+
- type: total_reward
|
1286 |
+
value: -480.31 +/- 8.63
|
1287 |
+
name: Total reward
|
1288 |
+
- type: normalized_total_reward
|
1289 |
+
value: 0.86 +/- 0.04
|
1290 |
+
name: Expert normalized total reward
|
1291 |
+
- task:
|
1292 |
+
type: in-context-reinforcement-learning
|
1293 |
+
name: In-Context Reinforcement Learning
|
1294 |
+
dataset:
|
1295 |
+
name: Industrial-Benchmark
|
1296 |
+
type: industrial-benchmark-70-v1
|
1297 |
+
metrics:
|
1298 |
+
- type: total_reward
|
1299 |
+
value: -480.76 +/- 5.98
|
1300 |
+
name: Total reward
|
1301 |
+
- type: normalized_total_reward
|
1302 |
+
value: 0.95 +/- 0.03
|
1303 |
+
name: Expert normalized total reward
|
1304 |
+
- task:
|
1305 |
+
type: in-context-reinforcement-learning
|
1306 |
+
name: In-Context Reinforcement Learning
|
1307 |
+
dataset:
|
1308 |
+
name: Industrial-Benchmark
|
1309 |
+
type: industrial-benchmark-75-v1
|
1310 |
+
metrics:
|
1311 |
+
- type: total_reward
|
1312 |
+
value: -476.83 +/- 2.44
|
1313 |
+
name: Total reward
|
1314 |
+
- type: normalized_total_reward
|
1315 |
+
value: 0.99 +/- 0.01
|
1316 |
+
name: Expert normalized total reward
|
1317 |
+
- task:
|
1318 |
+
type: in-context-reinforcement-learning
|
1319 |
+
name: In-Context Reinforcement Learning
|
1320 |
+
dataset:
|
1321 |
+
name: Industrial-Benchmark
|
1322 |
+
type: industrial-benchmark-80-v1
|
1323 |
+
metrics:
|
1324 |
+
- type: total_reward
|
1325 |
+
value: -497.13 +/- 2.95
|
1326 |
+
name: Total reward
|
1327 |
+
- type: normalized_total_reward
|
1328 |
+
value: 0.96 +/- 0.01
|
1329 |
+
name: Expert normalized total reward
|
1330 |
+
- task:
|
1331 |
+
type: in-context-reinforcement-learning
|
1332 |
+
name: In-Context Reinforcement Learning
|
1333 |
+
dataset:
|
1334 |
+
name: Industrial-Benchmark
|
1335 |
+
type: industrial-benchmark-85-v1
|
1336 |
+
metrics:
|
1337 |
+
- type: total_reward
|
1338 |
+
value: -513.83 +/- 3.06
|
1339 |
+
name: Total reward
|
1340 |
+
- type: normalized_total_reward
|
1341 |
+
value: 0.98 +/- 0.01
|
1342 |
+
name: Expert normalized total reward
|
1343 |
+
- task:
|
1344 |
+
type: in-context-reinforcement-learning
|
1345 |
+
name: In-Context Reinforcement Learning
|
1346 |
+
dataset:
|
1347 |
+
name: Industrial-Benchmark
|
1348 |
+
type: industrial-benchmark-90-v1
|
1349 |
+
metrics:
|
1350 |
+
- type: total_reward
|
1351 |
+
value: -532.70 +/- 3.61
|
1352 |
+
name: Total reward
|
1353 |
+
- type: normalized_total_reward
|
1354 |
+
value: 0.97 +/- 0.01
|
1355 |
+
name: Expert normalized total reward
|
1356 |
+
- task:
|
1357 |
+
type: in-context-reinforcement-learning
|
1358 |
+
name: In-Context Reinforcement Learning
|
1359 |
+
dataset:
|
1360 |
+
name: Industrial-Benchmark
|
1361 |
+
type: industrial-benchmark-95-v1
|
1362 |
+
metrics:
|
1363 |
+
- type: total_reward
|
1364 |
+
value: -557.42 +/- 3.81
|
1365 |
+
name: Total reward
|
1366 |
+
- type: normalized_total_reward
|
1367 |
+
value: 0.97 +/- 0.01
|
1368 |
+
name: Expert normalized total reward
|
1369 |
+
- task:
|
1370 |
+
type: in-context-reinforcement-learning
|
1371 |
+
name: In-Context Reinforcement Learning
|
1372 |
+
dataset:
|
1373 |
+
name: Industrial-Benchmark
|
1374 |
+
type: industrial-benchmark-100-v1
|
1375 |
+
metrics:
|
1376 |
+
- type: total_reward
|
1377 |
+
value: -574.57 +/- 4.37
|
1378 |
+
name: Total reward
|
1379 |
+
- type: normalized_total_reward
|
1380 |
+
value: 0.97 +/- 0.01
|
1381 |
+
name: Expert normalized total reward
|
1382 |
---
|
1383 |
# Model Card for Vintix
|
1384 |
|