File size: 19,199 Bytes
3afc463 45f4abb 3afc463 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
import math
import re
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Normal
from transformers import PreTrainedModel
from huggingface_hub import PyTorchModelHubMixin
from numba import jit
from .configuration import FsgConfig
from typing import Literal, Type, Union, List
def batch_fn(iterable, n=1):
l = len(iterable)
for ndx in range(0, l, n):
yield iterable[ndx : min(ndx + n, l)]
def gaussian_kernel_1d(sigma: float, num_sigmas: float = 3.0) -> torch.Tensor:
radius = math.ceil(num_sigmas * sigma)
support = torch.arange(-radius, radius + 1, dtype=torch.float)
kernel = Normal(loc=0, scale=sigma).log_prob(support).exp_()
# Ensure kernel weights sum to 1, so that image brightness is not altered
return kernel.mul_(1 / kernel.sum())
def gaussian_filter_2d(img: torch.Tensor, sigma: float) -> torch.Tensor:
kernel_1d = gaussian_kernel_1d(sigma).to(img.device) # Create 1D Gaussian kernel
padding = len(kernel_1d) // 2 # Ensure that image size does not change
img = img[None, None, ...] # Need 4D data for ``conv2d()``
# Convolve along columns and rows
img = F.conv2d(img, weight=kernel_1d.view(1, 1, -1, 1), padding=(padding, 0))
img = F.conv2d(img, weight=kernel_1d.view(1, 1, 1, -1), padding=(0, padding))
return img.squeeze() # Make 2D again
class BaseModel(nn.Module):
def __init__(
self,
patch_size: int,
num_classes: int = 0,
**kwargs,
):
super().__init__()
self.patch_size = patch_size
self.num_classes = num_classes
class ConstrainedConv(nn.Module):
def __init__(self, input_chan=3, num_filters=6, is_constrained=True):
super().__init__()
self.kernel_size = 5
self.input_chan = input_chan
self.num_filters = num_filters
self.is_constrained = is_constrained
weight = torch.empty(num_filters, input_chan, self.kernel_size, self.kernel_size)
nn.init.xavier_normal_(weight, gain=1/3)
self.weight = nn.Parameter(weight, requires_grad=True)
self.one_middle = torch.zeros(self.kernel_size * self.kernel_size)
self.one_middle[12] = 1
self.one_middle = nn.Parameter(self.one_middle, requires_grad=False)
def forward(self, x):
w = self.weight
if self.is_constrained:
w = w.view(-1, self.kernel_size * self.kernel_size)
w = w - w.mean(1)[..., None] + 1 / (self.kernel_size * self.kernel_size - 1)
w = w - (w + 1) * self.one_middle
w = w.view(self.num_filters, self.input_chan, self.kernel_size, self.kernel_size)
x = nn.functional.conv2d(x, w, padding="valid")
x = nn.functional.pad(x, (2, 3, 2, 3))
return x
class ConvBlock(torch.nn.Module):
def __init__(
self,
in_chans,
out_chans,
kernel_size,
stride,
padding,
activation: Literal["tanh", "relu"],
):
super().__init__()
assert activation.lower() in ["tanh", "relu"], "The activation layer must be either Tanh or ReLU"
self.conv = torch.nn.Conv2d(
in_chans,
out_chans,
kernel_size=kernel_size,
stride=stride,
padding=padding,
)
self.bn = torch.nn.BatchNorm2d(out_chans)
self.act = torch.nn.Tanh() if activation.lower() == "tanh" else torch.nn.ReLU()
self.maxpool = torch.nn.MaxPool2d(kernel_size=(3, 3), stride=2)
def forward(self, x):
return self.maxpool(self.act(self.bn(self.conv(x))))
class DenseBlock(torch.nn.Module):
def __init__(
self,
in_chans,
out_chans,
activation: Literal["tanh", "relu"],
):
super().__init__()
assert activation.lower() in ["tanh", "relu"], "The activation layer must be either Tanh or ReLU"
self.fc = torch.nn.Linear(in_chans, out_chans)
self.act = torch.nn.Tanh() if activation.lower() == "tanh" else torch.nn.ReLU()
def forward(self, x):
return self.act(self.fc(x))
class MISLNet(BaseModel):
arch = {
"p256": [
("conv1", -1, 96, 7, 2, "valid", "tanh"),
("conv2", 96, 64, 5, 1, "same", "tanh"),
("conv3", 64, 64, 5, 1, "same", "tanh"),
("conv4", 64, 128, 1, 1, "same", "tanh"),
("fc1", 6 * 6 * 128, 200, "tanh"),
("fc2", 200, 200, "tanh"),
],
"p256_3fc_256e": [
("conv1", -1, 96, 7, 2, "valid", "tanh"),
("conv2", 96, 64, 5, 1, "same", "tanh"),
("conv3", 64, 64, 5, 1, "same", "tanh"),
("conv4", 64, 128, 1, 1, "same", "tanh"),
("fc1", 6 * 6 * 128, 1024, "tanh"),
("fc2", 1024, 512, "tanh"),
("fc3", 512, 256, "tanh"),
],
"p128": [
("conv1", -1, 96, 7, 2, "valid", "tanh"),
("conv2", 96, 64, 5, 1, "same", "tanh"),
("conv3", 64, 64, 5, 1, "same", "tanh"),
("conv4", 64, 128, 1, 1, "same", "tanh"),
("fc1", 2 * 2 * 128, 200, "tanh"),
("fc2", 200, 200, "tanh"),
],
"p96": [
("conv1", -1, 96, 7, 2, "valid", "tanh"),
("conv2", 96, 64, 5, 1, "same", "tanh"),
("conv3", 64, 64, 5, 1, "same", "tanh"),
("conv4", 64, 128, 1, 1, "same", "tanh"),
("fc1", 8 * 4 * 64, 200, "tanh"),
("fc2", 200, 200, "tanh"),
],
"p64": [
("conv1", -1, 96, 7, 2, "valid", "tanh"),
("conv2", 96, 64, 5, 1, "same", "tanh"),
("conv3", 64, 64, 5, 1, "same", "tanh"),
("conv4", 64, 128, 1, 1, "same", "tanh"),
("fc1", 2 * 4 * 64, 200, "tanh"),
("fc2", 200, 200, "tanh"),
],
}
def __init__(
self,
patch_size: int,
variant: str,
num_classes=0,
num_filters=6,
is_constrained=True,
**kwargs,
):
super().__init__(patch_size, num_classes)
self.variant = variant
self.chosen_arch = self.arch[variant]
self.num_filters = num_filters
self.constrained_conv = ConstrainedConv(num_filters=num_filters, is_constrained=is_constrained)
self.conv_blocks = []
self.fc_blocks = []
for block in self.chosen_arch:
if block[0].startswith("conv"):
self.conv_blocks.append(
ConvBlock(
in_chans=(num_filters if block[1] == -1 else block[1]),
out_chans=block[2],
kernel_size=block[3],
stride=block[4],
padding=block[5],
activation=block[6],
)
)
elif block[0].startswith("fc"):
self.fc_blocks.append(
DenseBlock(
in_chans=block[1],
out_chans=block[2],
activation=block[3],
)
)
self.conv_blocks = nn.Sequential(*self.conv_blocks)
self.fc_blocks = nn.Sequential(*self.fc_blocks)
self.register_buffer("flatten_index_permutation", torch.tensor([0, 1, 2, 3], dtype=torch.long))
if self.num_classes > 0:
self.output = nn.Linear(self.chosen_arch[-1][2], self.num_classes)
def forward(self, x):
x = self.constrained_conv(x)
x = self.conv_blocks(x)
x = x.permute(*self.flatten_index_permutation)
x = x.flatten(1, -1)
x = self.fc_blocks(x)
if self.num_classes > 0:
x = self.output(x)
return x
def load_state_dict(self, state_dict, strict=True, assign=False):
if "flatten_index_permutation" not in state_dict:
super().load_state_dict(state_dict, False, assign)
else:
super().load_state_dict(state_dict, strict, assign)
class CompareNet(nn.Module):
def __init__(self, input_dim, hidden_dim=2048, output_dim=64):
super().__init__()
self.fc1 = DenseBlock(input_dim, hidden_dim, "relu")
self.fc2 = DenseBlock(hidden_dim * 3, output_dim, "relu")
self.fc3 = nn.Linear(output_dim, 2)
def forward(self, x1, x2):
x1 = self.fc1(x1)
x2 = self.fc1(x2)
x = torch.cat((x1, x1 * x2, x2), dim=1)
x = self.fc2(x)
x = self.fc3(x)
return x
class FSM(nn.Module):
"""
FSM (Forensic Similarity Metric) is a neural network module that computes the similarity between two input images using a feature extraction module and a comparison network module.
Args:
fe_config (dict): Configuration for the feature extraction module.
comparenet_config (dict): Configuration for the comparison network module.
fe_ckpt (str): Path to the checkpoint file for the feature extraction module.
**kwargs: Additional keyword arguments.
"""
def __init__(
self,
fe_config,
comparenet_config,
fe_ckpt=None,
**kwargs,
):
super().__init__()
fe_config["num_classes"] = 0 # to make fe without final classification layer
self.fe: MISLNet = self.load_module_from_ckpt(MISLNet, fe_ckpt, "", **fe_config)
self.patch_size = self.fe.patch_size
comparenet_config["input_dim"] = self.fe.fc_blocks[-1].fc.out_features
self.comparenet = CompareNet(**comparenet_config)
self.fe_freeze = True
def load_module_state_dict(self, module: nn.Module, state_dict, module_name=""):
curr_model_state_dict = module.state_dict()
curr_model_keys_status = {k: False for k in curr_model_state_dict.keys()}
outstanding_keys = []
for ckpt_layer_name, ckpt_layer_weights in state_dict.items():
if module_name not in ckpt_layer_name:
continue
ckpt_matches = re.findall(r"(?=(?:^|\.)((?:\w+\.)*\w+)$)", ckpt_layer_name)[::-1]
model_layer_name_match = list(set(ckpt_matches).intersection(set(curr_model_state_dict.keys())))
# print(ckpt_layer_name, model_layer_name_match)
if len(model_layer_name_match) == 0:
outstanding_keys.append(ckpt_layer_name)
else:
model_layer_name = model_layer_name_match[0]
assert (
curr_model_state_dict[model_layer_name].shape == ckpt_layer_weights.shape
), f"Ckpt layer '{ckpt_layer_name}' shape {ckpt_layer_weights.shape} does not match model layer '{model_layer_name}' shape {curr_model_state_dict[model_layer_name].shape}"
curr_model_state_dict[model_layer_name] = ckpt_layer_weights
curr_model_keys_status[model_layer_name] = True
if all(curr_model_keys_status.values()):
print(f"Success! All necessary keys for module '{module.__class__.__name__}' are loaded!")
else:
not_loaded_keys = [k for k, v in curr_model_keys_status.items() if not v]
print(f"Warning! Some keys are not loaded! Not loaded keys are:\n{not_loaded_keys}")
if len(outstanding_keys) > 0:
print(f"Outstanding keys are: {outstanding_keys}")
module.load_state_dict(curr_model_state_dict, strict=False)
def load_module_from_ckpt(
self,
module_class: Type[nn.Module],
ckpt_path: Union[None, str],
module_name: str,
*args,
**kwargs,
) -> nn.Module:
module = module_class(*args, **kwargs)
if ckpt_path is not None:
ckpt = torch.load(ckpt_path, map_location="cpu")
ckpt_state_dict = ckpt["state_dict"]
self.load_module_state_dict(module, ckpt_state_dict, module_name=module_name)
return module
def load_state_dict(self, state_dict, strict=True, assign=False):
try:
super().load_state_dict(state_dict, strict=strict, assign=assign)
except Exception as e:
print(f"Error loading state dict using normal method: {e}")
print("Trying to load state dict manually...")
# self.load_module_state_dict(self.fe, state_dict, module_name="fe")
# self.load_module_state_dict(self.comparenet, state_dict, module_name="comparenet")
self.load_module_state_dict(self, state_dict, module_name="")
print("State dict loaded successfully!")
def forward_fe(self, x):
if self.freeze_fe:
self.fe.eval()
with torch.no_grad():
return self.fe(x)
else:
self.fe.train()
return self.fe(x)
def forward(self, x1, x2):
x1 = self.forward_fe(x1)
x2 = self.forward_fe(x2)
return self.comparenet(x1, x2)
class FsgModel(
PreTrainedModel,
PyTorchModelHubMixin,
repo_url="ductai199x/forensic-similarity-graph",
pipeline_tag="image-manipulation-detection-localization",
license="cc-by-nc-nd-4.0",
):
"""
Forensic Similarity Graph (FSG) algorithm.
https://ieeexplore.ieee.org/abstract/document/9113265
This class is designed to create a graph-based representation of forensic similarity between different patches of an image, allowing for the detection of manipulated regions.
"""
config_class = FsgConfig
def __init__(self, config: FsgConfig, **kwargs):
super().__init__(config)
self.patch_size = config.fe_config.patch_size
self.stride = int(self.patch_size * config.stride_ratio)
self.fast_sim_mode = config.fast_sim_mode
self.loc_threshold = config.loc_threshold
self.is_high_sim = True
self.need_input_255 = config.need_input_255
self.model = FSM(fe_config=config.fe_config.to_dict(), comparenet_config=config.comparenet_config.to_dict())
warnings.filterwarnings("ignore")
def get_batched_patches(self, x: torch.Tensor):
B, C, H, W = x.shape
# split images into batches of patches: B x C x H x W -> B x (NumPatchHeight x NumPatchWidth) x C x PatchSize x PatchSize
batched_patches = (
x.unfold(2, self.patch_size, self.stride)
.unfold(3, self.patch_size, self.stride)
.permute(0, 2, 3, 1, 4, 5)
)
batched_patches = batched_patches.contiguous().view(B, -1, C, self.patch_size, self.patch_size)
return batched_patches
def get_patches_single(self, x: torch.Tensor):
C, H, W = x.shape
patches = (
x.unfold(1, self.patch_size, self.stride)
.unfold(2, self.patch_size, self.stride)
.permute(1, 2, 0, 3, 4)
)
patches = patches.contiguous().view(-1, C, self.patch_size, self.patch_size)
return patches
@jit(forceobj=True)
def get_features(self, image_patches: torch.Tensor):
patches_features = []
for batch in list(batch_fn(image_patches, 256)):
batch = batch.float()
feats = self.model.fe(batch).detach()
patches_features.append(feats)
patches_features = torch.vstack(patches_features)
return patches_features
@jit(forceobj=True)
def get_sim_scores(self, patch_pairs):
patches_sim_scores = []
for batch in list(batch_fn(patch_pairs, 4096)):
batch = batch.permute(1, 0, 2).float()
scores = self.model.comparenet(*batch).detach()
scores = torch.nn.functional.softmax(scores, dim=1)
patches_sim_scores.append(scores)
patches_sim_scores = torch.vstack(patches_sim_scores)
return patches_sim_scores
def forward_single(self, patches: torch.Tensor):
P, C, H, W = patches.shape
features = self.get_features(patches)
sim_mat = torch.zeros(P, P, device=patches.device)
if self.fast_sim_mode:
upper_tri_idx = torch.triu_indices(P, P, 1).T
patch_pairs = features[upper_tri_idx]
else:
patch_cart_prod = torch.cartesian_prod(torch.arange(P), torch.arange(P))
patch_pairs = features[patch_cart_prod]
sim_scores = self.get_sim_scores(patch_pairs).detach()
if self.fast_sim_mode:
sim_mat[upper_tri_idx[:, 0], upper_tri_idx[:, 1]] = sim_scores[:, 1]
sim_mat += sim_mat.clone().T
else:
sim_mat = sim_scores[:, 1].view(P, P)
sim_mat = 0.5 * (sim_mat + sim_mat.T)
if not self.is_high_sim:
sim_mat = 1 - sim_mat
sim_mat.fill_diagonal_(0.0)
degree_mat = torch.diag(sim_mat.sum(axis=1))
laplacian_mat = degree_mat - sim_mat
degree_sym_mat = torch.diag(sim_mat.sum(axis=1) ** -0.5)
laplacian_sym_mat = (degree_sym_mat @ laplacian_mat) @ degree_sym_mat
eigvals, eigvecs = torch.linalg.eigh(laplacian_sym_mat.cpu())
spectral_gap = eigvals[1] - eigvals[0]
img_pred = 1 - spectral_gap
eigvec = eigvecs[:, 1]
patch_pred = (eigvec > 0).int()
return img_pred.detach(), patch_pred.detach()
def forward(self, x: Union[torch.Tensor, List[torch.Tensor]]):
if isinstance(x, torch.Tensor) and len(x.shape) == 3:
x = [x]
img_preds = []
loc_preds = []
for img in x:
C, H, W = img.shape
if self.need_input_255 and img.max() <= 1:
img = img * 255
# get the (x, y) coordinates of the top left of each patch in the image
x_inds = torch.arange(W).unfold(0, self.patch_size, self.stride)[:, 0]
y_inds = torch.arange(H).unfold(0, self.patch_size, self.stride)[:, 0]
xy_inds = torch.tensor([(ii, jj) for jj in y_inds for ii in x_inds]).to(img.device)
patches = self.get_patches_single(img)
img_pred, patch_pred = self.forward_single(patches)
loc_pred = self.patch_to_pixel_pred(patch_pred, xy_inds)
loc_pred = F.interpolate(loc_pred[None, None, ...], size=(H, W), mode="nearest").squeeze()
img_preds.append(img_pred)
loc_preds.append(loc_pred)
return img_preds, loc_preds
def patch_to_pixel_pred(self, patch_pred, xy_inds):
W, H = torch.max(xy_inds, dim=0).values + self.patch_size
pixel_pred = torch.zeros((H, W)).to(patch_pred.device)
coverage_map = torch.zeros((H, W)).to(patch_pred.device)
for (x, y), pred in zip(xy_inds, patch_pred):
pixel_pred[y : y + self.patch_size, x : x + self.patch_size] += pred
coverage_map[y : y + self.patch_size, x : x + self.patch_size] += 1
# perform gaussian smoothing
pixel_pred = gaussian_filter_2d(pixel_pred, sigma=32)
coverage_map = gaussian_filter_2d(coverage_map, sigma=32)
pixel_pred /= coverage_map + 1e-8
pixel_pred /= pixel_pred.max() + 1e-8
if pixel_pred.sum() > pixel_pred.numel() * 0.5:
pixel_pred = 1 - pixel_pred
pixel_pred = (pixel_pred > self.loc_threshold).float()
return pixel_pred
|