Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, List, Any
|
| 2 |
+
import numpy as np
|
| 3 |
+
from transformers import CLIPProcessor, CLIPModel
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from io import BytesIO
|
| 6 |
+
import base64
|
| 7 |
+
|
| 8 |
+
class EndpointHandler():
|
| 9 |
+
def __init__(self, path=""):
|
| 10 |
+
# Preload all the elements you we need at inference.
|
| 11 |
+
self.model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
| 12 |
+
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 16 |
+
inputs = data.get("inputs")
|
| 17 |
+
text = inputs.get("text")
|
| 18 |
+
imageData = inputs.get("image")
|
| 19 |
+
image = Image.open(BytesIO(base64.b64decode(imageData)))
|
| 20 |
+
inputs = self.processor(text=text, images=image, return_tensors="pt", padding=True)
|
| 21 |
+
outputs = self.model(**inputs)
|
| 22 |
+
embeddings = outputs.image_embeds.detach().numpy().flatten().tolist()
|
| 23 |
+
return { "embeddings": embeddings }
|