prompt-compression-v4
This model is a fine-tuned version of Falconsai/text_summarization on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.1497
- Rouge1: 0.8047
- Rouge2: 0.6286
- Rougel: 0.7659
- Rougelsum: 0.7661
- Comp Ratio Mean: 0.8587
- Comp Ratio P90: 1.0
- Pct Violations: 0.0086
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1
Training results
| Training Loss | Epoch | Step | Comp Ratio Mean | Comp Ratio P90 | Validation Loss | Pct Violations | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|
| 2.5957 | 1.0 | 9046 | 0.8750 | 1.0 | 2.2213 | 0.0110 | 0.7909 | 0.6068 | 0.7495 | 0.7497 |
| 2.3048 | 2.0 | 18092 | 0.8642 | 1.0 | 2.1750 | 0.0099 | 0.7997 | 0.6202 | 0.7602 | 0.7605 |
| 2.2638 | 3.0 | 27138 | 2.1497 | 0.8047 | 0.6286 | 0.7659 | 0.7661 | 0.8587 | 1.0 | 0.0086 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 36
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for dotslashderek/prompt-compression-v4
Base model
Falconsai/text_summarization