don-unagi commited on
Commit
981dcc6
·
verified ·
1 Parent(s): a73c0ed

upload naive model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,645 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:100
8
+ - loss:MatryoshkaLoss
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: Snowflake/snowflake-arctic-embed-l
11
+ widget:
12
+ - source_sentence: What did the author plan to do with the dark meat and carcass after
13
+ cooking the turkey?
14
+ sentences:
15
+ - 'Let’s say a family of four wants to spend only $365 per month on groceries, saving
16
+ them $579 per month over that USDA average family in the link above. Investing
17
+ this savings would compound into about $102,483.00 every ten years, which would
18
+ obviously make a pretty big improvement in the financial health of the average
19
+ young family.
20
+
21
+ To hit a monthly grocery spending target like that, you first have to understand
22
+ what you are buying. There are four mouths to feed, each consuming three meals
23
+ a day or 91.25 meals per month. Let’s say they all need adult levels of calories,
24
+ so about 2000 per day.'
25
+ - When you eat beans and rice in the same meal, you’re getting complete protein
26
+ at virtually no cost. Nuts and especially peanut butter are also a good way to
27
+ mix high calories with built-in protein. Eggs contain the highest quality complete
28
+ protein of all (6 grams per egg), so I enjoy three of them every day.
29
+ - 'Turkey 101 Follow-up
30
+
31
+ Thought I’d share how my freezer “spring clean” is going. In an attempt to reduce
32
+ the number of trips to the grocery store in April, I’ve taken on the challenge
33
+ to use up what I have first. Here’s my first attempt at staying away from the
34
+ deli-counter:
35
+
36
+ Day 1- After anxiously awaiting the 3 day defrost, ready to cook turkey! Easy
37
+ enough. Since I usually overcook meat (just to make sure it’s dead), decided to
38
+ cook it breast side down; using gravity to my advantage, resulting in big, juicy
39
+ breasts (just like my hubby likes). Save dark meat for later. Freeze some white
40
+ meat, slice some for sandwiches, make broth from carcass.'
41
+ - source_sentence: What are the benefits of using whole oils in your diet according
42
+ to the context?
43
+ sentences:
44
+ - 'What to Eat
45
+
46
+ Finally, the fun part! As the wise people of India have proven beyond all other
47
+ cultures*, amazing food is all about preparation and spices, rather than starting
48
+ with costly ingredients. Once you know which ingredients make good staples, you
49
+ can easily poke around on the Internet or in any cookbook to find an infinite
50
+ number of good recipes that use them.
51
+
52
+ At the simplest “bachelor” level, you’ve got recipes like:
53
+
54
+ Fancy home fries:'
55
+ - 'Aha.. now things are sounding much better. Although not all of the foods above
56
+ cost less than $1 per meal, they can certainly average out to less than that,
57
+ depending on how you combine them. And when planning your menu to meet a certain
58
+ budget, averaging out is exactly your goal. You still want to be able to eat apples,
59
+ organic chicken breast, or whatever your heart desires. You just have to not eat
60
+ entirely those most expensive foods.
61
+
62
+ And remember, this $1.00 target is just something I picked out of a hat for an
63
+ example – you’re allowed to spend whatever works for you.'
64
+ - Whole oils are the ultimate example. They are packed with tasty, slow-metabolizing
65
+ calories, extremely good for you, and easy to mix into your diet. Using olive
66
+ oil as an example, you can one third of a day worth of calories for 57 cents.
67
+ Every time you dump these oils into a frying pan, or mix them into a recipe or
68
+ a salad dressing, you’re lowering your food cost – the oil provides calories that
69
+ your body might otherwise get from cans of Coke, Filet Mignon, or Burger King
70
+ dollar menu burgers.
71
+ - source_sentence: What ingredients did the "Master Mix" consist of, and how was it
72
+ used in cooking?
73
+ sentences:
74
+ - 'Day 4- Morph yesterdays’ meal into a turkey pot pie. Thankfully, pie crust does
75
+ not require yeast….I think. Decide to skip the 99 cent pre-packaged spice mix,
76
+ and make my own taco seasoning?! I don’t have any maltodextrin, modified corn
77
+ starch, autolyzed yeast extract, or caramel color (sulfites) in my cupboard; so
78
+ hope it turns out okay. Cook up the remaining meat for turkey tacos, and freeze
79
+ half for later.
80
+
81
+ Day 5- Enjoy eating leftovers.'
82
+ - This is a fantastic article. I’m generally responsible for our family’s grocery
83
+ shopping since I do the dinner cooking. Our budget is $185 for a family of four
84
+ per two weeks (two boys are almost 4 and 16 months). Some two-weeks are tight,
85
+ but it’s been worthwhile for our bottom line to keep the budget set. We also
86
+ budget $20 for restaurants per 2 weeks. Yes, I know we can’t go out on that,
87
+ but if we save it up, we can go out once a month or so, or order pizza one week,
88
+ or some combination. I’m sure our budget will increase when the boys get older,
89
+ but by then, we should be bringing in more money, so we plan on being able to
90
+ absorb the increase. Eating healthy and abundantly doesn’t have to be expensive,
91
+ but it does require work and
92
+ - 'When I was growing up, my parents had 9 mouths to feed, and I remember my mom
93
+ making something called a “Master Mix”. It was basically a biscuit mix with the
94
+ butter mixed in already, which she kept in a 4-liter ice cream pail. She’d use
95
+ it to make pizza dough (among other things), and she’d top it with canned tomato
96
+ soup (still condensed), shredded carrots and broccoli and cheddar cheese. My
97
+ siblings and I have confessed an occasional desire to eat it again, although I
98
+ don’t know I’d ever try it out on my own kids.
99
+
100
+
101
+ Reply
102
+
103
+
104
+
105
+
106
+
107
+
108
+
109
+ Diane
110
+
111
+ April 9, 2020, 11:30 pm'
112
+ - source_sentence: What changes were made to the homeowners insurance policy to achieve
113
+ a $600 reduction?
114
+ sentences:
115
+ - 'And contrary to the 1990s low-fat-diet fad, the human body loves oil. It’s yummy,
116
+ clean-burning, good for a giant range of body functions, and it is satisfying
117
+ to eat too. I eat a fairly high-fat/low-carb diet these days, yet I’m leaner than
118
+ ever, because the oily food doesn’t cause spikes of fake appetite like bread does.
119
+ I’ve even been known to bring containers of herb-infused olive oil on road trips,
120
+ supplementing every meal with this supercharger nutrient, especially when it’s
121
+ time for an extreme hike or a high-energy work day.
122
+
123
+ See Article: The Amazing Waist-Slimming, Wallet-Fattening Nutrient'
124
+ - First thing- reduced insurance by $600 with increasing the homeowners deductible
125
+ from $500 to $1000, and switching providers. Be warned- was not informed about
126
+ the “unannounced 3rd party” that would be knocking on my door, as well as the
127
+ additional cost to reappraise some items- but still overall a reduction. Second-
128
+ dropped the gym membership ($131/month). Now don’t have to feel guilty about not
129
+ going. Enjoy the outdoors more anyhow. Third- scaled back on vacation. I’m actually
130
+ “on vacation” everyday, as even with all the expenses, we’re at FI.
131
+ - 'Reply
132
+
133
+
134
+
135
+
136
+
137
+ beachmama
138
+
139
+ January 31, 2017, 11:39 am
140
+
141
+
142
+
143
+ As a 25+ year veg, 12 year vegan, I’ve always supplemented b-12. After getting
144
+ blood work done I found I was critically low in D3. Turns out it’s not just because
145
+ I’m a woman over 50 (now 61) and through menopause, or that I’ve been veg for
146
+ over half my life, I’m fit and walk the beach 20 miles a week so getting sun isn’t
147
+ enough even in California. Apparently most people are D3 deficient but never know
148
+ until they become symptomatic or have a blood test. I recommend you get a simple
149
+ test to check on b-12 and d3 just to make sure you’re in good shape. And you are
150
+ SO right about protein . . . Westerners eat FAR too much protein ; )
151
+
152
+
153
+ Reply
154
+
155
+
156
+
157
+
158
+
159
+
160
+
161
+
162
+
163
+
164
+
165
+
166
+
167
+ riley
168
+
169
+ March 29, 2012, 7:07 am'
170
+ - source_sentence: What additional ingredients are suggested to increase protein content
171
+ in the context?
172
+ sentences:
173
+ - 'Those are just two simple recipes. The key to frugal eating is to have at least
174
+ ten good things you know how to make.
175
+
176
+ There are many chefs among the readers. Maybe we will get to hear some of their
177
+ best low-cost and easy-to-make creations in the comments section below?
178
+
179
+ Further Reading:
180
+
181
+ Grocery Shopping with your Middle Finger – an old MMM classic on this same topic,
182
+ where I first started thinking about cost per calorie. But there I  was dealing
183
+ with food stockups and sales rather than thinking of it on a per-meal or per-month
184
+ basis.
185
+
186
+ * According to the strong opinion of my own taste buds'
187
+ - 'Thanks for this timely article! In the midst of the March Challenge; was trying
188
+ to determine the next item to tackle- and groceries was it! How’d you know it
189
+ was $1000? Hmmm….psychic.
190
+
191
+ I FINALLY updated all the spending on Quicken last month to make myself stare
192
+ it in the face. No surprises; not ugly, but not very pretty either. The most valuable
193
+ outcome of the exercise was showing my husband that his hard efforts are appreciated,
194
+ and I’m stepping up!'
195
+ - cocoa and maybe some ground flax or whatever is lying around) for an extra 40
196
+ grams of protein.
197
+ pipeline_tag: sentence-similarity
198
+ library_name: sentence-transformers
199
+ metrics:
200
+ - cosine_accuracy@1
201
+ - cosine_accuracy@3
202
+ - cosine_accuracy@5
203
+ - cosine_accuracy@10
204
+ - cosine_precision@1
205
+ - cosine_precision@3
206
+ - cosine_precision@5
207
+ - cosine_precision@10
208
+ - cosine_recall@1
209
+ - cosine_recall@3
210
+ - cosine_recall@5
211
+ - cosine_recall@10
212
+ - cosine_ndcg@10
213
+ - cosine_mrr@10
214
+ - cosine_map@100
215
+ model-index:
216
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
217
+ results:
218
+ - task:
219
+ type: information-retrieval
220
+ name: Information Retrieval
221
+ dataset:
222
+ name: Unknown
223
+ type: unknown
224
+ metrics:
225
+ - type: cosine_accuracy@1
226
+ value: 0.7582417582417582
227
+ name: Cosine Accuracy@1
228
+ - type: cosine_accuracy@3
229
+ value: 0.9120879120879121
230
+ name: Cosine Accuracy@3
231
+ - type: cosine_accuracy@5
232
+ value: 0.945054945054945
233
+ name: Cosine Accuracy@5
234
+ - type: cosine_accuracy@10
235
+ value: 0.9725274725274725
236
+ name: Cosine Accuracy@10
237
+ - type: cosine_precision@1
238
+ value: 0.7582417582417582
239
+ name: Cosine Precision@1
240
+ - type: cosine_precision@3
241
+ value: 0.304029304029304
242
+ name: Cosine Precision@3
243
+ - type: cosine_precision@5
244
+ value: 0.18901098901098898
245
+ name: Cosine Precision@5
246
+ - type: cosine_precision@10
247
+ value: 0.09725274725274723
248
+ name: Cosine Precision@10
249
+ - type: cosine_recall@1
250
+ value: 0.7582417582417582
251
+ name: Cosine Recall@1
252
+ - type: cosine_recall@3
253
+ value: 0.9120879120879121
254
+ name: Cosine Recall@3
255
+ - type: cosine_recall@5
256
+ value: 0.945054945054945
257
+ name: Cosine Recall@5
258
+ - type: cosine_recall@10
259
+ value: 0.9725274725274725
260
+ name: Cosine Recall@10
261
+ - type: cosine_ndcg@10
262
+ value: 0.870936179086928
263
+ name: Cosine Ndcg@10
264
+ - type: cosine_mrr@10
265
+ value: 0.837580673294959
266
+ name: Cosine Mrr@10
267
+ - type: cosine_map@100
268
+ value: 0.8395868579934513
269
+ name: Cosine Map@100
270
+ ---
271
+
272
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
273
+
274
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
275
+
276
+ ## Model Details
277
+
278
+ ### Model Description
279
+ - **Model Type:** Sentence Transformer
280
+ - **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
281
+ - **Maximum Sequence Length:** 512 tokens
282
+ - **Output Dimensionality:** 1024 dimensions
283
+ - **Similarity Function:** Cosine Similarity
284
+ <!-- - **Training Dataset:** Unknown -->
285
+ <!-- - **Language:** Unknown -->
286
+ <!-- - **License:** Unknown -->
287
+
288
+ ### Model Sources
289
+
290
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
291
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
292
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
293
+
294
+ ### Full Model Architecture
295
+
296
+ ```
297
+ SentenceTransformer(
298
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
299
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
300
+ (2): Normalize()
301
+ )
302
+ ```
303
+
304
+ ## Usage
305
+
306
+ ### Direct Usage (Sentence Transformers)
307
+
308
+ First install the Sentence Transformers library:
309
+
310
+ ```bash
311
+ pip install -U sentence-transformers
312
+ ```
313
+
314
+ Then you can load this model and run inference.
315
+ ```python
316
+ from sentence_transformers import SentenceTransformer
317
+
318
+ # Download from the 🤗 Hub
319
+ model = SentenceTransformer("sentence_transformers_model_id")
320
+ # Run inference
321
+ sentences = [
322
+ 'What additional ingredients are suggested to increase protein content in the context?',
323
+ 'cocoa and maybe some ground flax or whatever is lying around) for an extra 40 grams of protein.',
324
+ 'Thanks for this timely article! In the midst of the March Challenge; was trying to determine the next item to tackle- and groceries was it! How’d you know it was $1000? Hmmm….psychic.\nI FINALLY updated all the spending on Quicken last month to make myself stare it in the face. No surprises; not ugly, but not very pretty either. The most valuable outcome of the exercise was showing my husband that his hard efforts are appreciated, and I’m stepping up!',
325
+ ]
326
+ embeddings = model.encode(sentences)
327
+ print(embeddings.shape)
328
+ # [3, 1024]
329
+
330
+ # Get the similarity scores for the embeddings
331
+ similarities = model.similarity(embeddings, embeddings)
332
+ print(similarities.shape)
333
+ # [3, 3]
334
+ ```
335
+
336
+ <!--
337
+ ### Direct Usage (Transformers)
338
+
339
+ <details><summary>Click to see the direct usage in Transformers</summary>
340
+
341
+ </details>
342
+ -->
343
+
344
+ <!--
345
+ ### Downstream Usage (Sentence Transformers)
346
+
347
+ You can finetune this model on your own dataset.
348
+
349
+ <details><summary>Click to expand</summary>
350
+
351
+ </details>
352
+ -->
353
+
354
+ <!--
355
+ ### Out-of-Scope Use
356
+
357
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
358
+ -->
359
+
360
+ ## Evaluation
361
+
362
+ ### Metrics
363
+
364
+ #### Information Retrieval
365
+
366
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
367
+
368
+ | Metric | Value |
369
+ |:--------------------|:-----------|
370
+ | cosine_accuracy@1 | 0.7582 |
371
+ | cosine_accuracy@3 | 0.9121 |
372
+ | cosine_accuracy@5 | 0.9451 |
373
+ | cosine_accuracy@10 | 0.9725 |
374
+ | cosine_precision@1 | 0.7582 |
375
+ | cosine_precision@3 | 0.304 |
376
+ | cosine_precision@5 | 0.189 |
377
+ | cosine_precision@10 | 0.0973 |
378
+ | cosine_recall@1 | 0.7582 |
379
+ | cosine_recall@3 | 0.9121 |
380
+ | cosine_recall@5 | 0.9451 |
381
+ | cosine_recall@10 | 0.9725 |
382
+ | **cosine_ndcg@10** | **0.8709** |
383
+ | cosine_mrr@10 | 0.8376 |
384
+ | cosine_map@100 | 0.8396 |
385
+
386
+ <!--
387
+ ## Bias, Risks and Limitations
388
+
389
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
390
+ -->
391
+
392
+ <!--
393
+ ### Recommendations
394
+
395
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
396
+ -->
397
+
398
+ ## Training Details
399
+
400
+ ### Training Dataset
401
+
402
+ #### Unnamed Dataset
403
+
404
+ * Size: 100 training samples
405
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
406
+ * Approximate statistics based on the first 100 samples:
407
+ | | sentence_0 | sentence_1 |
408
+ |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
409
+ | type | string | string |
410
+ | details | <ul><li>min: 12 tokens</li><li>mean: 17.78 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 125.38 tokens</li><li>max: 195 tokens</li></ul> |
411
+ * Samples:
412
+ | sentence_0 | sentence_1 |
413
+ |:------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
414
+ | <code>What strategies might be suggested for reducing a $1000 grocery bill?</code> | <code>Killing your $1000 Grocery Bill<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>Home<br>Media<br>Contact<br><br><br><br> Email<br> RSS<br><br><br><br><br><br><br><br>Start Here<br>About<br>Random<br><br>MMM Recommends<br>Forum<br>MMM Classics<br><br><br>Mr. Money Mustache<br><br><br><br><br> View: Fancy Magazine | Classic Blog<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>Mar 29, 2012<br>428 comments<br>Killing your $1000 Grocery Bill</code> |
415
+ | <code>When was the article "Killing your $1000 Grocery Bill" published?</code> | <code>Killing your $1000 Grocery Bill<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>Home<br>Media<br>Contact<br><br><br><br> Email<br> RSS<br><br><br><br><br><br><br><br>Start Here<br>About<br>Random<br><br>MMM Recommends<br>Forum<br>MMM Classics<br><br><br>Mr. Money Mustache<br><br><br><br><br> View: Fancy Magazine | Classic Blog<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>Mar 29, 2012<br>428 comments<br>Killing your $1000 Grocery Bill</code> |
416
+ | <code>What type of event was the narrator attending where they enjoyed a potluck buffet?</code> | <code>A few years ago, I was at a party eating some amazing food at the potluck buffet. In my area, there seems to be a friendly competition among the thirtysomething outdoorsy tech worker crowd, of trying to out-chef each other. It’s a contest I heartily approve of and I am happy to be both an underdog competitor and a judge.<br>Anyway, the topic turned to how good we have it in our lives, with such plentiful food that we can afford to spend hours combining exotic ingredients just for the sake of overfilling our bellies.<br>“Yeah… I know it’s a bit over the top”, I said, “but we probably spend 80 bucks a week on good groceries. I think it’s worth it if you can afford it”.</code> |
417
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
418
+ ```json
419
+ {
420
+ "loss": "MultipleNegativesRankingLoss",
421
+ "matryoshka_dims": [
422
+ 768,
423
+ 512,
424
+ 256,
425
+ 128,
426
+ 64
427
+ ],
428
+ "matryoshka_weights": [
429
+ 1,
430
+ 1,
431
+ 1,
432
+ 1,
433
+ 1
434
+ ],
435
+ "n_dims_per_step": -1
436
+ }
437
+ ```
438
+
439
+ ### Training Hyperparameters
440
+ #### Non-Default Hyperparameters
441
+
442
+ - `eval_strategy`: steps
443
+ - `per_device_train_batch_size`: 10
444
+ - `per_device_eval_batch_size`: 10
445
+ - `num_train_epochs`: 5
446
+ - `multi_dataset_batch_sampler`: round_robin
447
+
448
+ #### All Hyperparameters
449
+ <details><summary>Click to expand</summary>
450
+
451
+ - `overwrite_output_dir`: False
452
+ - `do_predict`: False
453
+ - `eval_strategy`: steps
454
+ - `prediction_loss_only`: True
455
+ - `per_device_train_batch_size`: 10
456
+ - `per_device_eval_batch_size`: 10
457
+ - `per_gpu_train_batch_size`: None
458
+ - `per_gpu_eval_batch_size`: None
459
+ - `gradient_accumulation_steps`: 1
460
+ - `eval_accumulation_steps`: None
461
+ - `torch_empty_cache_steps`: None
462
+ - `learning_rate`: 5e-05
463
+ - `weight_decay`: 0.0
464
+ - `adam_beta1`: 0.9
465
+ - `adam_beta2`: 0.999
466
+ - `adam_epsilon`: 1e-08
467
+ - `max_grad_norm`: 1
468
+ - `num_train_epochs`: 5
469
+ - `max_steps`: -1
470
+ - `lr_scheduler_type`: linear
471
+ - `lr_scheduler_kwargs`: {}
472
+ - `warmup_ratio`: 0.0
473
+ - `warmup_steps`: 0
474
+ - `log_level`: passive
475
+ - `log_level_replica`: warning
476
+ - `log_on_each_node`: True
477
+ - `logging_nan_inf_filter`: True
478
+ - `save_safetensors`: True
479
+ - `save_on_each_node`: False
480
+ - `save_only_model`: False
481
+ - `restore_callback_states_from_checkpoint`: False
482
+ - `no_cuda`: False
483
+ - `use_cpu`: False
484
+ - `use_mps_device`: False
485
+ - `seed`: 42
486
+ - `data_seed`: None
487
+ - `jit_mode_eval`: False
488
+ - `use_ipex`: False
489
+ - `bf16`: False
490
+ - `fp16`: False
491
+ - `fp16_opt_level`: O1
492
+ - `half_precision_backend`: auto
493
+ - `bf16_full_eval`: False
494
+ - `fp16_full_eval`: False
495
+ - `tf32`: None
496
+ - `local_rank`: 0
497
+ - `ddp_backend`: None
498
+ - `tpu_num_cores`: None
499
+ - `tpu_metrics_debug`: False
500
+ - `debug`: []
501
+ - `dataloader_drop_last`: False
502
+ - `dataloader_num_workers`: 0
503
+ - `dataloader_prefetch_factor`: None
504
+ - `past_index`: -1
505
+ - `disable_tqdm`: False
506
+ - `remove_unused_columns`: True
507
+ - `label_names`: None
508
+ - `load_best_model_at_end`: False
509
+ - `ignore_data_skip`: False
510
+ - `fsdp`: []
511
+ - `fsdp_min_num_params`: 0
512
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
513
+ - `fsdp_transformer_layer_cls_to_wrap`: None
514
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
515
+ - `deepspeed`: None
516
+ - `label_smoothing_factor`: 0.0
517
+ - `optim`: adamw_torch
518
+ - `optim_args`: None
519
+ - `adafactor`: False
520
+ - `group_by_length`: False
521
+ - `length_column_name`: length
522
+ - `ddp_find_unused_parameters`: None
523
+ - `ddp_bucket_cap_mb`: None
524
+ - `ddp_broadcast_buffers`: False
525
+ - `dataloader_pin_memory`: True
526
+ - `dataloader_persistent_workers`: False
527
+ - `skip_memory_metrics`: True
528
+ - `use_legacy_prediction_loop`: False
529
+ - `push_to_hub`: False
530
+ - `resume_from_checkpoint`: None
531
+ - `hub_model_id`: None
532
+ - `hub_strategy`: every_save
533
+ - `hub_private_repo`: None
534
+ - `hub_always_push`: False
535
+ - `gradient_checkpointing`: False
536
+ - `gradient_checkpointing_kwargs`: None
537
+ - `include_inputs_for_metrics`: False
538
+ - `include_for_metrics`: []
539
+ - `eval_do_concat_batches`: True
540
+ - `fp16_backend`: auto
541
+ - `push_to_hub_model_id`: None
542
+ - `push_to_hub_organization`: None
543
+ - `mp_parameters`:
544
+ - `auto_find_batch_size`: False
545
+ - `full_determinism`: False
546
+ - `torchdynamo`: None
547
+ - `ray_scope`: last
548
+ - `ddp_timeout`: 1800
549
+ - `torch_compile`: False
550
+ - `torch_compile_backend`: None
551
+ - `torch_compile_mode`: None
552
+ - `dispatch_batches`: None
553
+ - `split_batches`: None
554
+ - `include_tokens_per_second`: False
555
+ - `include_num_input_tokens_seen`: False
556
+ - `neftune_noise_alpha`: None
557
+ - `optim_target_modules`: None
558
+ - `batch_eval_metrics`: False
559
+ - `eval_on_start`: False
560
+ - `use_liger_kernel`: False
561
+ - `eval_use_gather_object`: False
562
+ - `average_tokens_across_devices`: False
563
+ - `prompts`: None
564
+ - `batch_sampler`: batch_sampler
565
+ - `multi_dataset_batch_sampler`: round_robin
566
+
567
+ </details>
568
+
569
+ ### Training Logs
570
+ | Epoch | Step | cosine_ndcg@10 |
571
+ |:-----:|:----:|:--------------:|
572
+ | 1.0 | 10 | 0.8684 |
573
+ | 2.0 | 20 | 0.8698 |
574
+ | 3.0 | 30 | 0.8699 |
575
+ | 4.0 | 40 | 0.8706 |
576
+ | 5.0 | 50 | 0.8709 |
577
+
578
+
579
+ ### Framework Versions
580
+ - Python: 3.13.1
581
+ - Sentence Transformers: 3.4.1
582
+ - Transformers: 4.48.3
583
+ - PyTorch: 2.6.0
584
+ - Accelerate: 1.3.0
585
+ - Datasets: 3.2.0
586
+ - Tokenizers: 0.21.0
587
+
588
+ ## Citation
589
+
590
+ ### BibTeX
591
+
592
+ #### Sentence Transformers
593
+ ```bibtex
594
+ @inproceedings{reimers-2019-sentence-bert,
595
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
596
+ author = "Reimers, Nils and Gurevych, Iryna",
597
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
598
+ month = "11",
599
+ year = "2019",
600
+ publisher = "Association for Computational Linguistics",
601
+ url = "https://arxiv.org/abs/1908.10084",
602
+ }
603
+ ```
604
+
605
+ #### MatryoshkaLoss
606
+ ```bibtex
607
+ @misc{kusupati2024matryoshka,
608
+ title={Matryoshka Representation Learning},
609
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
610
+ year={2024},
611
+ eprint={2205.13147},
612
+ archivePrefix={arXiv},
613
+ primaryClass={cs.LG}
614
+ }
615
+ ```
616
+
617
+ #### MultipleNegativesRankingLoss
618
+ ```bibtex
619
+ @misc{henderson2017efficient,
620
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
621
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
622
+ year={2017},
623
+ eprint={1705.00652},
624
+ archivePrefix={arXiv},
625
+ primaryClass={cs.CL}
626
+ }
627
+ ```
628
+
629
+ <!--
630
+ ## Glossary
631
+
632
+ *Clearly define terms in order to be accessible across audiences.*
633
+ -->
634
+
635
+ <!--
636
+ ## Model Card Authors
637
+
638
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
639
+ -->
640
+
641
+ <!--
642
+ ## Model Card Contact
643
+
644
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
645
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Snowflake/snowflake-arctic-embed-l",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 1024,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 4096,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 24,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.48.3",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.3",
5
+ "pytorch": "2.6.0"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": "cosine"
12
+ }
eval/Information-Retrieval_evaluation_results.csv ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
+ 1.0,10,0.7527472527472527,0.8846153846153846,0.9395604395604396,0.978021978021978,0.7527472527472527,0.7527472527472527,0.2948717948717949,0.8846153846153846,0.18791208791208786,0.9395604395604396,0.09780219780219777,0.978021978021978,0.8328274899703473,0.8683743495397397,0.8339370346654182
3
+ 2.0,20,0.7582417582417582,0.9065934065934066,0.9395604395604396,0.967032967032967,0.7582417582417582,0.7582417582417582,0.3021978021978022,0.9065934065934066,0.18791208791208786,0.9395604395604396,0.09670329670329668,0.967032967032967,0.8377507413221699,0.86975095164045,0.8398418767876896
4
+ 3.0,30,0.7637362637362637,0.9010989010989011,0.9505494505494505,0.967032967032967,0.7637362637362637,0.7637362637362637,0.30036630036630035,0.9010989010989011,0.19010989010989007,0.9505494505494505,0.09670329670329668,0.967032967032967,0.838025466596895,0.8699454084801792,0.8402376927102201
5
+ 4.0,40,0.7582417582417582,0.9065934065934066,0.945054945054945,0.9725274725274725,0.7582417582417582,0.7582417582417582,0.3021978021978022,0.9065934065934066,0.18901098901098898,0.945054945054945,0.09725274725274723,0.9725274725274725,0.8371555032269318,0.8705827832369307,0.8391616879254242
6
+ 5.0,50,0.7582417582417582,0.9120879120879121,0.945054945054945,0.9725274725274725,0.7582417582417582,0.7582417582417582,0.304029304029304,0.9120879120879121,0.18901098901098898,0.945054945054945,0.09725274725274723,0.9725274725274725,0.837580673294959,0.870936179086928,0.8395868579934513
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:417b1e9d062074179c3dd4cb601f652a877799927d04f4bff8ece3cb622ce17b
3
+ size 1336413848
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "[PAD]",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "[SEP]",
56
+ "stride": 0,
57
+ "strip_accents": null,
58
+ "tokenize_chinese_chars": true,
59
+ "tokenizer_class": "BertTokenizer",
60
+ "truncation_side": "right",
61
+ "truncation_strategy": "longest_first",
62
+ "unk_token": "[UNK]"
63
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff