upload naive model
Browse files- 1_Pooling/config.json +10 -0
- README.md +645 -0
- config.json +25 -0
- config_sentence_transformers.json +12 -0
- eval/Information-Retrieval_evaluation_results.csv +6 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +63 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,645 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:100
|
8 |
+
- loss:MatryoshkaLoss
|
9 |
+
- loss:MultipleNegativesRankingLoss
|
10 |
+
base_model: Snowflake/snowflake-arctic-embed-l
|
11 |
+
widget:
|
12 |
+
- source_sentence: What did the author plan to do with the dark meat and carcass after
|
13 |
+
cooking the turkey?
|
14 |
+
sentences:
|
15 |
+
- 'Let’s say a family of four wants to spend only $365 per month on groceries, saving
|
16 |
+
them $579 per month over that USDA average family in the link above. Investing
|
17 |
+
this savings would compound into about $102,483.00 every ten years, which would
|
18 |
+
obviously make a pretty big improvement in the financial health of the average
|
19 |
+
young family.
|
20 |
+
|
21 |
+
To hit a monthly grocery spending target like that, you first have to understand
|
22 |
+
what you are buying. There are four mouths to feed, each consuming three meals
|
23 |
+
a day or 91.25 meals per month. Let’s say they all need adult levels of calories,
|
24 |
+
so about 2000 per day.'
|
25 |
+
- When you eat beans and rice in the same meal, you’re getting complete protein
|
26 |
+
at virtually no cost. Nuts and especially peanut butter are also a good way to
|
27 |
+
mix high calories with built-in protein. Eggs contain the highest quality complete
|
28 |
+
protein of all (6 grams per egg), so I enjoy three of them every day.
|
29 |
+
- 'Turkey 101 Follow-up
|
30 |
+
|
31 |
+
Thought I’d share how my freezer “spring clean” is going. In an attempt to reduce
|
32 |
+
the number of trips to the grocery store in April, I’ve taken on the challenge
|
33 |
+
to use up what I have first. Here’s my first attempt at staying away from the
|
34 |
+
deli-counter:
|
35 |
+
|
36 |
+
Day 1- After anxiously awaiting the 3 day defrost, ready to cook turkey! Easy
|
37 |
+
enough. Since I usually overcook meat (just to make sure it’s dead), decided to
|
38 |
+
cook it breast side down; using gravity to my advantage, resulting in big, juicy
|
39 |
+
breasts (just like my hubby likes). Save dark meat for later. Freeze some white
|
40 |
+
meat, slice some for sandwiches, make broth from carcass.'
|
41 |
+
- source_sentence: What are the benefits of using whole oils in your diet according
|
42 |
+
to the context?
|
43 |
+
sentences:
|
44 |
+
- 'What to Eat
|
45 |
+
|
46 |
+
Finally, the fun part! As the wise people of India have proven beyond all other
|
47 |
+
cultures*, amazing food is all about preparation and spices, rather than starting
|
48 |
+
with costly ingredients. Once you know which ingredients make good staples, you
|
49 |
+
can easily poke around on the Internet or in any cookbook to find an infinite
|
50 |
+
number of good recipes that use them.
|
51 |
+
|
52 |
+
At the simplest “bachelor” level, you’ve got recipes like:
|
53 |
+
|
54 |
+
Fancy home fries:'
|
55 |
+
- 'Aha.. now things are sounding much better. Although not all of the foods above
|
56 |
+
cost less than $1 per meal, they can certainly average out to less than that,
|
57 |
+
depending on how you combine them. And when planning your menu to meet a certain
|
58 |
+
budget, averaging out is exactly your goal. You still want to be able to eat apples,
|
59 |
+
organic chicken breast, or whatever your heart desires. You just have to not eat
|
60 |
+
entirely those most expensive foods.
|
61 |
+
|
62 |
+
And remember, this $1.00 target is just something I picked out of a hat for an
|
63 |
+
example – you’re allowed to spend whatever works for you.'
|
64 |
+
- Whole oils are the ultimate example. They are packed with tasty, slow-metabolizing
|
65 |
+
calories, extremely good for you, and easy to mix into your diet. Using olive
|
66 |
+
oil as an example, you can one third of a day worth of calories for 57 cents.
|
67 |
+
Every time you dump these oils into a frying pan, or mix them into a recipe or
|
68 |
+
a salad dressing, you’re lowering your food cost – the oil provides calories that
|
69 |
+
your body might otherwise get from cans of Coke, Filet Mignon, or Burger King
|
70 |
+
dollar menu burgers.
|
71 |
+
- source_sentence: What ingredients did the "Master Mix" consist of, and how was it
|
72 |
+
used in cooking?
|
73 |
+
sentences:
|
74 |
+
- 'Day 4- Morph yesterdays’ meal into a turkey pot pie. Thankfully, pie crust does
|
75 |
+
not require yeast….I think. Decide to skip the 99 cent pre-packaged spice mix,
|
76 |
+
and make my own taco seasoning?! I don’t have any maltodextrin, modified corn
|
77 |
+
starch, autolyzed yeast extract, or caramel color (sulfites) in my cupboard; so
|
78 |
+
hope it turns out okay. Cook up the remaining meat for turkey tacos, and freeze
|
79 |
+
half for later.
|
80 |
+
|
81 |
+
Day 5- Enjoy eating leftovers.'
|
82 |
+
- This is a fantastic article. I’m generally responsible for our family’s grocery
|
83 |
+
shopping since I do the dinner cooking. Our budget is $185 for a family of four
|
84 |
+
per two weeks (two boys are almost 4 and 16 months). Some two-weeks are tight,
|
85 |
+
but it’s been worthwhile for our bottom line to keep the budget set. We also
|
86 |
+
budget $20 for restaurants per 2 weeks. Yes, I know we can’t go out on that,
|
87 |
+
but if we save it up, we can go out once a month or so, or order pizza one week,
|
88 |
+
or some combination. I’m sure our budget will increase when the boys get older,
|
89 |
+
but by then, we should be bringing in more money, so we plan on being able to
|
90 |
+
absorb the increase. Eating healthy and abundantly doesn’t have to be expensive,
|
91 |
+
but it does require work and
|
92 |
+
- 'When I was growing up, my parents had 9 mouths to feed, and I remember my mom
|
93 |
+
making something called a “Master Mix”. It was basically a biscuit mix with the
|
94 |
+
butter mixed in already, which she kept in a 4-liter ice cream pail. She’d use
|
95 |
+
it to make pizza dough (among other things), and she’d top it with canned tomato
|
96 |
+
soup (still condensed), shredded carrots and broccoli and cheddar cheese. My
|
97 |
+
siblings and I have confessed an occasional desire to eat it again, although I
|
98 |
+
don’t know I’d ever try it out on my own kids.
|
99 |
+
|
100 |
+
|
101 |
+
Reply
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
Diane
|
110 |
+
|
111 |
+
April 9, 2020, 11:30 pm'
|
112 |
+
- source_sentence: What changes were made to the homeowners insurance policy to achieve
|
113 |
+
a $600 reduction?
|
114 |
+
sentences:
|
115 |
+
- 'And contrary to the 1990s low-fat-diet fad, the human body loves oil. It’s yummy,
|
116 |
+
clean-burning, good for a giant range of body functions, and it is satisfying
|
117 |
+
to eat too. I eat a fairly high-fat/low-carb diet these days, yet I’m leaner than
|
118 |
+
ever, because the oily food doesn’t cause spikes of fake appetite like bread does.
|
119 |
+
I’ve even been known to bring containers of herb-infused olive oil on road trips,
|
120 |
+
supplementing every meal with this supercharger nutrient, especially when it’s
|
121 |
+
time for an extreme hike or a high-energy work day.
|
122 |
+
|
123 |
+
See Article: The Amazing Waist-Slimming, Wallet-Fattening Nutrient'
|
124 |
+
- First thing- reduced insurance by $600 with increasing the homeowners deductible
|
125 |
+
from $500 to $1000, and switching providers. Be warned- was not informed about
|
126 |
+
the “unannounced 3rd party” that would be knocking on my door, as well as the
|
127 |
+
additional cost to reappraise some items- but still overall a reduction. Second-
|
128 |
+
dropped the gym membership ($131/month). Now don’t have to feel guilty about not
|
129 |
+
going. Enjoy the outdoors more anyhow. Third- scaled back on vacation. I’m actually
|
130 |
+
“on vacation” everyday, as even with all the expenses, we’re at FI.
|
131 |
+
- 'Reply
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
beachmama
|
138 |
+
|
139 |
+
January 31, 2017, 11:39 am
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
As a 25+ year veg, 12 year vegan, I’ve always supplemented b-12. After getting
|
144 |
+
blood work done I found I was critically low in D3. Turns out it’s not just because
|
145 |
+
I’m a woman over 50 (now 61) and through menopause, or that I’ve been veg for
|
146 |
+
over half my life, I’m fit and walk the beach 20 miles a week so getting sun isn’t
|
147 |
+
enough even in California. Apparently most people are D3 deficient but never know
|
148 |
+
until they become symptomatic or have a blood test. I recommend you get a simple
|
149 |
+
test to check on b-12 and d3 just to make sure you’re in good shape. And you are
|
150 |
+
SO right about protein . . . Westerners eat FAR too much protein ; )
|
151 |
+
|
152 |
+
|
153 |
+
Reply
|
154 |
+
|
155 |
+
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
|
163 |
+
|
164 |
+
|
165 |
+
|
166 |
+
|
167 |
+
riley
|
168 |
+
|
169 |
+
March 29, 2012, 7:07 am'
|
170 |
+
- source_sentence: What additional ingredients are suggested to increase protein content
|
171 |
+
in the context?
|
172 |
+
sentences:
|
173 |
+
- 'Those are just two simple recipes. The key to frugal eating is to have at least
|
174 |
+
ten good things you know how to make.
|
175 |
+
|
176 |
+
There are many chefs among the readers. Maybe we will get to hear some of their
|
177 |
+
best low-cost and easy-to-make creations in the comments section below?
|
178 |
+
|
179 |
+
Further Reading:
|
180 |
+
|
181 |
+
Grocery Shopping with your Middle Finger – an old MMM classic on this same topic,
|
182 |
+
where I first started thinking about cost per calorie. But there I was dealing
|
183 |
+
with food stockups and sales rather than thinking of it on a per-meal or per-month
|
184 |
+
basis.
|
185 |
+
|
186 |
+
* According to the strong opinion of my own taste buds'
|
187 |
+
- 'Thanks for this timely article! In the midst of the March Challenge; was trying
|
188 |
+
to determine the next item to tackle- and groceries was it! How’d you know it
|
189 |
+
was $1000? Hmmm….psychic.
|
190 |
+
|
191 |
+
I FINALLY updated all the spending on Quicken last month to make myself stare
|
192 |
+
it in the face. No surprises; not ugly, but not very pretty either. The most valuable
|
193 |
+
outcome of the exercise was showing my husband that his hard efforts are appreciated,
|
194 |
+
and I’m stepping up!'
|
195 |
+
- cocoa and maybe some ground flax or whatever is lying around) for an extra 40
|
196 |
+
grams of protein.
|
197 |
+
pipeline_tag: sentence-similarity
|
198 |
+
library_name: sentence-transformers
|
199 |
+
metrics:
|
200 |
+
- cosine_accuracy@1
|
201 |
+
- cosine_accuracy@3
|
202 |
+
- cosine_accuracy@5
|
203 |
+
- cosine_accuracy@10
|
204 |
+
- cosine_precision@1
|
205 |
+
- cosine_precision@3
|
206 |
+
- cosine_precision@5
|
207 |
+
- cosine_precision@10
|
208 |
+
- cosine_recall@1
|
209 |
+
- cosine_recall@3
|
210 |
+
- cosine_recall@5
|
211 |
+
- cosine_recall@10
|
212 |
+
- cosine_ndcg@10
|
213 |
+
- cosine_mrr@10
|
214 |
+
- cosine_map@100
|
215 |
+
model-index:
|
216 |
+
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
|
217 |
+
results:
|
218 |
+
- task:
|
219 |
+
type: information-retrieval
|
220 |
+
name: Information Retrieval
|
221 |
+
dataset:
|
222 |
+
name: Unknown
|
223 |
+
type: unknown
|
224 |
+
metrics:
|
225 |
+
- type: cosine_accuracy@1
|
226 |
+
value: 0.7582417582417582
|
227 |
+
name: Cosine Accuracy@1
|
228 |
+
- type: cosine_accuracy@3
|
229 |
+
value: 0.9120879120879121
|
230 |
+
name: Cosine Accuracy@3
|
231 |
+
- type: cosine_accuracy@5
|
232 |
+
value: 0.945054945054945
|
233 |
+
name: Cosine Accuracy@5
|
234 |
+
- type: cosine_accuracy@10
|
235 |
+
value: 0.9725274725274725
|
236 |
+
name: Cosine Accuracy@10
|
237 |
+
- type: cosine_precision@1
|
238 |
+
value: 0.7582417582417582
|
239 |
+
name: Cosine Precision@1
|
240 |
+
- type: cosine_precision@3
|
241 |
+
value: 0.304029304029304
|
242 |
+
name: Cosine Precision@3
|
243 |
+
- type: cosine_precision@5
|
244 |
+
value: 0.18901098901098898
|
245 |
+
name: Cosine Precision@5
|
246 |
+
- type: cosine_precision@10
|
247 |
+
value: 0.09725274725274723
|
248 |
+
name: Cosine Precision@10
|
249 |
+
- type: cosine_recall@1
|
250 |
+
value: 0.7582417582417582
|
251 |
+
name: Cosine Recall@1
|
252 |
+
- type: cosine_recall@3
|
253 |
+
value: 0.9120879120879121
|
254 |
+
name: Cosine Recall@3
|
255 |
+
- type: cosine_recall@5
|
256 |
+
value: 0.945054945054945
|
257 |
+
name: Cosine Recall@5
|
258 |
+
- type: cosine_recall@10
|
259 |
+
value: 0.9725274725274725
|
260 |
+
name: Cosine Recall@10
|
261 |
+
- type: cosine_ndcg@10
|
262 |
+
value: 0.870936179086928
|
263 |
+
name: Cosine Ndcg@10
|
264 |
+
- type: cosine_mrr@10
|
265 |
+
value: 0.837580673294959
|
266 |
+
name: Cosine Mrr@10
|
267 |
+
- type: cosine_map@100
|
268 |
+
value: 0.8395868579934513
|
269 |
+
name: Cosine Map@100
|
270 |
+
---
|
271 |
+
|
272 |
+
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
|
273 |
+
|
274 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
275 |
+
|
276 |
+
## Model Details
|
277 |
+
|
278 |
+
### Model Description
|
279 |
+
- **Model Type:** Sentence Transformer
|
280 |
+
- **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
|
281 |
+
- **Maximum Sequence Length:** 512 tokens
|
282 |
+
- **Output Dimensionality:** 1024 dimensions
|
283 |
+
- **Similarity Function:** Cosine Similarity
|
284 |
+
<!-- - **Training Dataset:** Unknown -->
|
285 |
+
<!-- - **Language:** Unknown -->
|
286 |
+
<!-- - **License:** Unknown -->
|
287 |
+
|
288 |
+
### Model Sources
|
289 |
+
|
290 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
291 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
292 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
293 |
+
|
294 |
+
### Full Model Architecture
|
295 |
+
|
296 |
+
```
|
297 |
+
SentenceTransformer(
|
298 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
299 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
300 |
+
(2): Normalize()
|
301 |
+
)
|
302 |
+
```
|
303 |
+
|
304 |
+
## Usage
|
305 |
+
|
306 |
+
### Direct Usage (Sentence Transformers)
|
307 |
+
|
308 |
+
First install the Sentence Transformers library:
|
309 |
+
|
310 |
+
```bash
|
311 |
+
pip install -U sentence-transformers
|
312 |
+
```
|
313 |
+
|
314 |
+
Then you can load this model and run inference.
|
315 |
+
```python
|
316 |
+
from sentence_transformers import SentenceTransformer
|
317 |
+
|
318 |
+
# Download from the 🤗 Hub
|
319 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
320 |
+
# Run inference
|
321 |
+
sentences = [
|
322 |
+
'What additional ingredients are suggested to increase protein content in the context?',
|
323 |
+
'cocoa and maybe some ground flax or whatever is lying around) for an extra 40 grams of protein.',
|
324 |
+
'Thanks for this timely article! In the midst of the March Challenge; was trying to determine the next item to tackle- and groceries was it! How’d you know it was $1000? Hmmm….psychic.\nI FINALLY updated all the spending on Quicken last month to make myself stare it in the face. No surprises; not ugly, but not very pretty either. The most valuable outcome of the exercise was showing my husband that his hard efforts are appreciated, and I’m stepping up!',
|
325 |
+
]
|
326 |
+
embeddings = model.encode(sentences)
|
327 |
+
print(embeddings.shape)
|
328 |
+
# [3, 1024]
|
329 |
+
|
330 |
+
# Get the similarity scores for the embeddings
|
331 |
+
similarities = model.similarity(embeddings, embeddings)
|
332 |
+
print(similarities.shape)
|
333 |
+
# [3, 3]
|
334 |
+
```
|
335 |
+
|
336 |
+
<!--
|
337 |
+
### Direct Usage (Transformers)
|
338 |
+
|
339 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
340 |
+
|
341 |
+
</details>
|
342 |
+
-->
|
343 |
+
|
344 |
+
<!--
|
345 |
+
### Downstream Usage (Sentence Transformers)
|
346 |
+
|
347 |
+
You can finetune this model on your own dataset.
|
348 |
+
|
349 |
+
<details><summary>Click to expand</summary>
|
350 |
+
|
351 |
+
</details>
|
352 |
+
-->
|
353 |
+
|
354 |
+
<!--
|
355 |
+
### Out-of-Scope Use
|
356 |
+
|
357 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
358 |
+
-->
|
359 |
+
|
360 |
+
## Evaluation
|
361 |
+
|
362 |
+
### Metrics
|
363 |
+
|
364 |
+
#### Information Retrieval
|
365 |
+
|
366 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
367 |
+
|
368 |
+
| Metric | Value |
|
369 |
+
|:--------------------|:-----------|
|
370 |
+
| cosine_accuracy@1 | 0.7582 |
|
371 |
+
| cosine_accuracy@3 | 0.9121 |
|
372 |
+
| cosine_accuracy@5 | 0.9451 |
|
373 |
+
| cosine_accuracy@10 | 0.9725 |
|
374 |
+
| cosine_precision@1 | 0.7582 |
|
375 |
+
| cosine_precision@3 | 0.304 |
|
376 |
+
| cosine_precision@5 | 0.189 |
|
377 |
+
| cosine_precision@10 | 0.0973 |
|
378 |
+
| cosine_recall@1 | 0.7582 |
|
379 |
+
| cosine_recall@3 | 0.9121 |
|
380 |
+
| cosine_recall@5 | 0.9451 |
|
381 |
+
| cosine_recall@10 | 0.9725 |
|
382 |
+
| **cosine_ndcg@10** | **0.8709** |
|
383 |
+
| cosine_mrr@10 | 0.8376 |
|
384 |
+
| cosine_map@100 | 0.8396 |
|
385 |
+
|
386 |
+
<!--
|
387 |
+
## Bias, Risks and Limitations
|
388 |
+
|
389 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
390 |
+
-->
|
391 |
+
|
392 |
+
<!--
|
393 |
+
### Recommendations
|
394 |
+
|
395 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
396 |
+
-->
|
397 |
+
|
398 |
+
## Training Details
|
399 |
+
|
400 |
+
### Training Dataset
|
401 |
+
|
402 |
+
#### Unnamed Dataset
|
403 |
+
|
404 |
+
* Size: 100 training samples
|
405 |
+
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
|
406 |
+
* Approximate statistics based on the first 100 samples:
|
407 |
+
| | sentence_0 | sentence_1 |
|
408 |
+
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
409 |
+
| type | string | string |
|
410 |
+
| details | <ul><li>min: 12 tokens</li><li>mean: 17.78 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 125.38 tokens</li><li>max: 195 tokens</li></ul> |
|
411 |
+
* Samples:
|
412 |
+
| sentence_0 | sentence_1 |
|
413 |
+
|:------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
414 |
+
| <code>What strategies might be suggested for reducing a $1000 grocery bill?</code> | <code>Killing your $1000 Grocery Bill<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>Home<br>Media<br>Contact<br><br><br><br> Email<br> RSS<br><br><br><br><br><br><br><br>Start Here<br>About<br>Random<br><br>MMM Recommends<br>Forum<br>MMM Classics<br><br><br>Mr. Money Mustache<br><br><br><br><br> View: Fancy Magazine | Classic Blog<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>Mar 29, 2012<br>428 comments<br>Killing your $1000 Grocery Bill</code> |
|
415 |
+
| <code>When was the article "Killing your $1000 Grocery Bill" published?</code> | <code>Killing your $1000 Grocery Bill<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>Home<br>Media<br>Contact<br><br><br><br> Email<br> RSS<br><br><br><br><br><br><br><br>Start Here<br>About<br>Random<br><br>MMM Recommends<br>Forum<br>MMM Classics<br><br><br>Mr. Money Mustache<br><br><br><br><br> View: Fancy Magazine | Classic Blog<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>Mar 29, 2012<br>428 comments<br>Killing your $1000 Grocery Bill</code> |
|
416 |
+
| <code>What type of event was the narrator attending where they enjoyed a potluck buffet?</code> | <code>A few years ago, I was at a party eating some amazing food at the potluck buffet. In my area, there seems to be a friendly competition among the thirtysomething outdoorsy tech worker crowd, of trying to out-chef each other. It’s a contest I heartily approve of and I am happy to be both an underdog competitor and a judge.<br>Anyway, the topic turned to how good we have it in our lives, with such plentiful food that we can afford to spend hours combining exotic ingredients just for the sake of overfilling our bellies.<br>“Yeah… I know it’s a bit over the top”, I said, “but we probably spend 80 bucks a week on good groceries. I think it’s worth it if you can afford it”.</code> |
|
417 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
418 |
+
```json
|
419 |
+
{
|
420 |
+
"loss": "MultipleNegativesRankingLoss",
|
421 |
+
"matryoshka_dims": [
|
422 |
+
768,
|
423 |
+
512,
|
424 |
+
256,
|
425 |
+
128,
|
426 |
+
64
|
427 |
+
],
|
428 |
+
"matryoshka_weights": [
|
429 |
+
1,
|
430 |
+
1,
|
431 |
+
1,
|
432 |
+
1,
|
433 |
+
1
|
434 |
+
],
|
435 |
+
"n_dims_per_step": -1
|
436 |
+
}
|
437 |
+
```
|
438 |
+
|
439 |
+
### Training Hyperparameters
|
440 |
+
#### Non-Default Hyperparameters
|
441 |
+
|
442 |
+
- `eval_strategy`: steps
|
443 |
+
- `per_device_train_batch_size`: 10
|
444 |
+
- `per_device_eval_batch_size`: 10
|
445 |
+
- `num_train_epochs`: 5
|
446 |
+
- `multi_dataset_batch_sampler`: round_robin
|
447 |
+
|
448 |
+
#### All Hyperparameters
|
449 |
+
<details><summary>Click to expand</summary>
|
450 |
+
|
451 |
+
- `overwrite_output_dir`: False
|
452 |
+
- `do_predict`: False
|
453 |
+
- `eval_strategy`: steps
|
454 |
+
- `prediction_loss_only`: True
|
455 |
+
- `per_device_train_batch_size`: 10
|
456 |
+
- `per_device_eval_batch_size`: 10
|
457 |
+
- `per_gpu_train_batch_size`: None
|
458 |
+
- `per_gpu_eval_batch_size`: None
|
459 |
+
- `gradient_accumulation_steps`: 1
|
460 |
+
- `eval_accumulation_steps`: None
|
461 |
+
- `torch_empty_cache_steps`: None
|
462 |
+
- `learning_rate`: 5e-05
|
463 |
+
- `weight_decay`: 0.0
|
464 |
+
- `adam_beta1`: 0.9
|
465 |
+
- `adam_beta2`: 0.999
|
466 |
+
- `adam_epsilon`: 1e-08
|
467 |
+
- `max_grad_norm`: 1
|
468 |
+
- `num_train_epochs`: 5
|
469 |
+
- `max_steps`: -1
|
470 |
+
- `lr_scheduler_type`: linear
|
471 |
+
- `lr_scheduler_kwargs`: {}
|
472 |
+
- `warmup_ratio`: 0.0
|
473 |
+
- `warmup_steps`: 0
|
474 |
+
- `log_level`: passive
|
475 |
+
- `log_level_replica`: warning
|
476 |
+
- `log_on_each_node`: True
|
477 |
+
- `logging_nan_inf_filter`: True
|
478 |
+
- `save_safetensors`: True
|
479 |
+
- `save_on_each_node`: False
|
480 |
+
- `save_only_model`: False
|
481 |
+
- `restore_callback_states_from_checkpoint`: False
|
482 |
+
- `no_cuda`: False
|
483 |
+
- `use_cpu`: False
|
484 |
+
- `use_mps_device`: False
|
485 |
+
- `seed`: 42
|
486 |
+
- `data_seed`: None
|
487 |
+
- `jit_mode_eval`: False
|
488 |
+
- `use_ipex`: False
|
489 |
+
- `bf16`: False
|
490 |
+
- `fp16`: False
|
491 |
+
- `fp16_opt_level`: O1
|
492 |
+
- `half_precision_backend`: auto
|
493 |
+
- `bf16_full_eval`: False
|
494 |
+
- `fp16_full_eval`: False
|
495 |
+
- `tf32`: None
|
496 |
+
- `local_rank`: 0
|
497 |
+
- `ddp_backend`: None
|
498 |
+
- `tpu_num_cores`: None
|
499 |
+
- `tpu_metrics_debug`: False
|
500 |
+
- `debug`: []
|
501 |
+
- `dataloader_drop_last`: False
|
502 |
+
- `dataloader_num_workers`: 0
|
503 |
+
- `dataloader_prefetch_factor`: None
|
504 |
+
- `past_index`: -1
|
505 |
+
- `disable_tqdm`: False
|
506 |
+
- `remove_unused_columns`: True
|
507 |
+
- `label_names`: None
|
508 |
+
- `load_best_model_at_end`: False
|
509 |
+
- `ignore_data_skip`: False
|
510 |
+
- `fsdp`: []
|
511 |
+
- `fsdp_min_num_params`: 0
|
512 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
513 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
514 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
515 |
+
- `deepspeed`: None
|
516 |
+
- `label_smoothing_factor`: 0.0
|
517 |
+
- `optim`: adamw_torch
|
518 |
+
- `optim_args`: None
|
519 |
+
- `adafactor`: False
|
520 |
+
- `group_by_length`: False
|
521 |
+
- `length_column_name`: length
|
522 |
+
- `ddp_find_unused_parameters`: None
|
523 |
+
- `ddp_bucket_cap_mb`: None
|
524 |
+
- `ddp_broadcast_buffers`: False
|
525 |
+
- `dataloader_pin_memory`: True
|
526 |
+
- `dataloader_persistent_workers`: False
|
527 |
+
- `skip_memory_metrics`: True
|
528 |
+
- `use_legacy_prediction_loop`: False
|
529 |
+
- `push_to_hub`: False
|
530 |
+
- `resume_from_checkpoint`: None
|
531 |
+
- `hub_model_id`: None
|
532 |
+
- `hub_strategy`: every_save
|
533 |
+
- `hub_private_repo`: None
|
534 |
+
- `hub_always_push`: False
|
535 |
+
- `gradient_checkpointing`: False
|
536 |
+
- `gradient_checkpointing_kwargs`: None
|
537 |
+
- `include_inputs_for_metrics`: False
|
538 |
+
- `include_for_metrics`: []
|
539 |
+
- `eval_do_concat_batches`: True
|
540 |
+
- `fp16_backend`: auto
|
541 |
+
- `push_to_hub_model_id`: None
|
542 |
+
- `push_to_hub_organization`: None
|
543 |
+
- `mp_parameters`:
|
544 |
+
- `auto_find_batch_size`: False
|
545 |
+
- `full_determinism`: False
|
546 |
+
- `torchdynamo`: None
|
547 |
+
- `ray_scope`: last
|
548 |
+
- `ddp_timeout`: 1800
|
549 |
+
- `torch_compile`: False
|
550 |
+
- `torch_compile_backend`: None
|
551 |
+
- `torch_compile_mode`: None
|
552 |
+
- `dispatch_batches`: None
|
553 |
+
- `split_batches`: None
|
554 |
+
- `include_tokens_per_second`: False
|
555 |
+
- `include_num_input_tokens_seen`: False
|
556 |
+
- `neftune_noise_alpha`: None
|
557 |
+
- `optim_target_modules`: None
|
558 |
+
- `batch_eval_metrics`: False
|
559 |
+
- `eval_on_start`: False
|
560 |
+
- `use_liger_kernel`: False
|
561 |
+
- `eval_use_gather_object`: False
|
562 |
+
- `average_tokens_across_devices`: False
|
563 |
+
- `prompts`: None
|
564 |
+
- `batch_sampler`: batch_sampler
|
565 |
+
- `multi_dataset_batch_sampler`: round_robin
|
566 |
+
|
567 |
+
</details>
|
568 |
+
|
569 |
+
### Training Logs
|
570 |
+
| Epoch | Step | cosine_ndcg@10 |
|
571 |
+
|:-----:|:----:|:--------------:|
|
572 |
+
| 1.0 | 10 | 0.8684 |
|
573 |
+
| 2.0 | 20 | 0.8698 |
|
574 |
+
| 3.0 | 30 | 0.8699 |
|
575 |
+
| 4.0 | 40 | 0.8706 |
|
576 |
+
| 5.0 | 50 | 0.8709 |
|
577 |
+
|
578 |
+
|
579 |
+
### Framework Versions
|
580 |
+
- Python: 3.13.1
|
581 |
+
- Sentence Transformers: 3.4.1
|
582 |
+
- Transformers: 4.48.3
|
583 |
+
- PyTorch: 2.6.0
|
584 |
+
- Accelerate: 1.3.0
|
585 |
+
- Datasets: 3.2.0
|
586 |
+
- Tokenizers: 0.21.0
|
587 |
+
|
588 |
+
## Citation
|
589 |
+
|
590 |
+
### BibTeX
|
591 |
+
|
592 |
+
#### Sentence Transformers
|
593 |
+
```bibtex
|
594 |
+
@inproceedings{reimers-2019-sentence-bert,
|
595 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
596 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
597 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
598 |
+
month = "11",
|
599 |
+
year = "2019",
|
600 |
+
publisher = "Association for Computational Linguistics",
|
601 |
+
url = "https://arxiv.org/abs/1908.10084",
|
602 |
+
}
|
603 |
+
```
|
604 |
+
|
605 |
+
#### MatryoshkaLoss
|
606 |
+
```bibtex
|
607 |
+
@misc{kusupati2024matryoshka,
|
608 |
+
title={Matryoshka Representation Learning},
|
609 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
610 |
+
year={2024},
|
611 |
+
eprint={2205.13147},
|
612 |
+
archivePrefix={arXiv},
|
613 |
+
primaryClass={cs.LG}
|
614 |
+
}
|
615 |
+
```
|
616 |
+
|
617 |
+
#### MultipleNegativesRankingLoss
|
618 |
+
```bibtex
|
619 |
+
@misc{henderson2017efficient,
|
620 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
621 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
622 |
+
year={2017},
|
623 |
+
eprint={1705.00652},
|
624 |
+
archivePrefix={arXiv},
|
625 |
+
primaryClass={cs.CL}
|
626 |
+
}
|
627 |
+
```
|
628 |
+
|
629 |
+
<!--
|
630 |
+
## Glossary
|
631 |
+
|
632 |
+
*Clearly define terms in order to be accessible across audiences.*
|
633 |
+
-->
|
634 |
+
|
635 |
+
<!--
|
636 |
+
## Model Card Authors
|
637 |
+
|
638 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
639 |
+
-->
|
640 |
+
|
641 |
+
<!--
|
642 |
+
## Model Card Contact
|
643 |
+
|
644 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
645 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Snowflake/snowflake-arctic-embed-l",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 1024,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 4096,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 16,
|
17 |
+
"num_hidden_layers": 24,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.48.3",
|
22 |
+
"type_vocab_size": 2,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 30522
|
25 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.1",
|
4 |
+
"transformers": "4.48.3",
|
5 |
+
"pytorch": "2.6.0"
|
6 |
+
},
|
7 |
+
"prompts": {
|
8 |
+
"query": "Represent this sentence for searching relevant passages: "
|
9 |
+
},
|
10 |
+
"default_prompt_name": null,
|
11 |
+
"similarity_fn_name": "cosine"
|
12 |
+
}
|
eval/Information-Retrieval_evaluation_results.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
|
2 |
+
1.0,10,0.7527472527472527,0.8846153846153846,0.9395604395604396,0.978021978021978,0.7527472527472527,0.7527472527472527,0.2948717948717949,0.8846153846153846,0.18791208791208786,0.9395604395604396,0.09780219780219777,0.978021978021978,0.8328274899703473,0.8683743495397397,0.8339370346654182
|
3 |
+
2.0,20,0.7582417582417582,0.9065934065934066,0.9395604395604396,0.967032967032967,0.7582417582417582,0.7582417582417582,0.3021978021978022,0.9065934065934066,0.18791208791208786,0.9395604395604396,0.09670329670329668,0.967032967032967,0.8377507413221699,0.86975095164045,0.8398418767876896
|
4 |
+
3.0,30,0.7637362637362637,0.9010989010989011,0.9505494505494505,0.967032967032967,0.7637362637362637,0.7637362637362637,0.30036630036630035,0.9010989010989011,0.19010989010989007,0.9505494505494505,0.09670329670329668,0.967032967032967,0.838025466596895,0.8699454084801792,0.8402376927102201
|
5 |
+
4.0,40,0.7582417582417582,0.9065934065934066,0.945054945054945,0.9725274725274725,0.7582417582417582,0.7582417582417582,0.3021978021978022,0.9065934065934066,0.18901098901098898,0.945054945054945,0.09725274725274723,0.9725274725274725,0.8371555032269318,0.8705827832369307,0.8391616879254242
|
6 |
+
5.0,50,0.7582417582417582,0.9120879120879121,0.945054945054945,0.9725274725274725,0.7582417582417582,0.7582417582417582,0.304029304029304,0.9120879120879121,0.18901098901098898,0.945054945054945,0.09725274725274723,0.9725274725274725,0.837580673294959,0.870936179086928,0.8395868579934513
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:417b1e9d062074179c3dd4cb601f652a877799927d04f4bff8ece3cb622ce17b
|
3 |
+
size 1336413848
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"extra_special_tokens": {},
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 512,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"pad_to_multiple_of": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"pad_token_type_id": 0,
|
54 |
+
"padding_side": "right",
|
55 |
+
"sep_token": "[SEP]",
|
56 |
+
"stride": 0,
|
57 |
+
"strip_accents": null,
|
58 |
+
"tokenize_chinese_chars": true,
|
59 |
+
"tokenizer_class": "BertTokenizer",
|
60 |
+
"truncation_side": "right",
|
61 |
+
"truncation_strategy": "longest_first",
|
62 |
+
"unk_token": "[UNK]"
|
63 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|