Create facenet.py
Browse files- facenet.py +197 -0
facenet.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This script is mostly based on the openpose preprocessor script of
|
2 |
+
# the sd-webui-controlnet project by Mikubill.
|
3 |
+
# https://github.com/Mikubill/sd-webui-controlnet/blob/main/annotator/openpose/face.py
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import onnxruntime as ort
|
7 |
+
import cv2
|
8 |
+
from PIL import Image
|
9 |
+
import pathlib
|
10 |
+
from typing import Tuple, Union, List
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
|
14 |
+
def smart_resize(image: np.ndarray, shape: Tuple[int, int]) -> np.ndarray:
|
15 |
+
"""
|
16 |
+
Resize an image to a target shape while preserving aspect ratio.
|
17 |
+
|
18 |
+
Parameters
|
19 |
+
----------
|
20 |
+
image : np.ndarray
|
21 |
+
The input image.
|
22 |
+
shape : Tuple[int, int]
|
23 |
+
The target shape (height, width).
|
24 |
+
|
25 |
+
Returns
|
26 |
+
-------
|
27 |
+
np.ndarray
|
28 |
+
The resized image
|
29 |
+
"""
|
30 |
+
|
31 |
+
Ht, Wt = shape
|
32 |
+
if image.ndim == 2:
|
33 |
+
Ho, Wo = image.shape
|
34 |
+
Co = 1
|
35 |
+
else:
|
36 |
+
Ho, Wo, Co = image.shape
|
37 |
+
if Co == 3 or Co == 1:
|
38 |
+
k = float(Ht + Wt) / float(Ho + Wo)
|
39 |
+
return cv2.resize(
|
40 |
+
image,
|
41 |
+
(int(Wt), int(Ht)),
|
42 |
+
interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4,
|
43 |
+
)
|
44 |
+
else:
|
45 |
+
return np.stack(
|
46 |
+
[smart_resize(image[:, :, i], shape) for i in range(Co)], axis=2
|
47 |
+
)
|
48 |
+
|
49 |
+
|
50 |
+
class FaceLandmarkDetector:
|
51 |
+
"""
|
52 |
+
The OpenPose face landmark detector model using ONNXRuntime.
|
53 |
+
|
54 |
+
Parameters
|
55 |
+
----------
|
56 |
+
face_model_path : str
|
57 |
+
The path to the ONNX model file.
|
58 |
+
"""
|
59 |
+
|
60 |
+
def __init__(self, face_model_path: pathlib.Path) -> None:
|
61 |
+
"""
|
62 |
+
Initialize the OpenPose face landmark detector model.
|
63 |
+
|
64 |
+
Parameters
|
65 |
+
----------
|
66 |
+
face_model_path : pathlib.Path
|
67 |
+
The path to the ONNX model file.
|
68 |
+
"""
|
69 |
+
|
70 |
+
# Initialize ONNX runtime session
|
71 |
+
self.session = ort.InferenceSession(
|
72 |
+
face_model_path, providers=["CPUExecutionProvider"]
|
73 |
+
)
|
74 |
+
self.input_name = self.session.get_inputs()[0].name
|
75 |
+
|
76 |
+
def _inference(self, face_img: np.ndarray) -> np.ndarray:
|
77 |
+
"""
|
78 |
+
Run the OpenPose face landmark detector model on an image.
|
79 |
+
|
80 |
+
Parameters
|
81 |
+
----------
|
82 |
+
face_img : np.ndarray
|
83 |
+
The input image.
|
84 |
+
|
85 |
+
Returns
|
86 |
+
-------
|
87 |
+
np.ndarray
|
88 |
+
The detected keypoints.
|
89 |
+
"""
|
90 |
+
|
91 |
+
# face_img should be a numpy array: H x W x C (likely RGB or BGR)
|
92 |
+
H, W, C = face_img.shape
|
93 |
+
|
94 |
+
# Preprocessing
|
95 |
+
w_size = 384 # ONNX is exported for this size
|
96 |
+
# Resize input image
|
97 |
+
resized_img = cv2.resize(
|
98 |
+
face_img, (w_size, w_size), interpolation=cv2.INTER_LINEAR
|
99 |
+
)
|
100 |
+
|
101 |
+
# Normalize: /256.0 - 0.5 (mimicking original code)
|
102 |
+
x_data = resized_img.astype(np.float32) / 256.0 - 0.5
|
103 |
+
|
104 |
+
# Convert to channel-first format: (C, H, W)
|
105 |
+
x_data = np.transpose(x_data, (2, 0, 1))
|
106 |
+
|
107 |
+
# Add batch dimension: (1, C, H, W)
|
108 |
+
x_data = np.expand_dims(x_data, axis=0)
|
109 |
+
|
110 |
+
# Run inference
|
111 |
+
outputs = self.session.run(None, {self.input_name: x_data})
|
112 |
+
|
113 |
+
# Assuming the model's last output corresponds to the heatmaps
|
114 |
+
# and is shaped like (1, num_parts, h_out, w_out)
|
115 |
+
heatmaps_original = outputs[-1]
|
116 |
+
|
117 |
+
# Remove batch dimension: (num_parts, h_out, w_out)
|
118 |
+
heatmaps_original = np.squeeze(heatmaps_original, axis=0)
|
119 |
+
|
120 |
+
# Resize the heatmaps back to the original image size
|
121 |
+
num_parts = heatmaps_original.shape[0]
|
122 |
+
heatmaps = np.zeros((num_parts, H, W), dtype=np.float32)
|
123 |
+
for i in range(num_parts):
|
124 |
+
heatmaps[i] = cv2.resize(
|
125 |
+
heatmaps_original[i], (W, H), interpolation=cv2.INTER_LINEAR
|
126 |
+
)
|
127 |
+
|
128 |
+
peaks = self.compute_peaks_from_heatmaps(heatmaps)
|
129 |
+
|
130 |
+
return peaks
|
131 |
+
|
132 |
+
def __call__(
|
133 |
+
self,
|
134 |
+
face_img: Union[np.ndarray, List[np.ndarray], Image.Image, List[Image.Image]],
|
135 |
+
) -> List[np.ndarray]:
|
136 |
+
"""
|
137 |
+
Run the OpenPose face landmark detector model on an image.
|
138 |
+
|
139 |
+
Parameters
|
140 |
+
----------
|
141 |
+
face_img : Union[np.ndarray, Image.Image, List[Image.Image]]
|
142 |
+
The input image or a list of input images.
|
143 |
+
|
144 |
+
Returns
|
145 |
+
-------
|
146 |
+
List[np.ndarray]
|
147 |
+
The detected keypoints.
|
148 |
+
"""
|
149 |
+
|
150 |
+
if isinstance(face_img, Image.Image):
|
151 |
+
image_list = [np.array(face_img)]
|
152 |
+
elif isinstance(face_img, list):
|
153 |
+
if isinstance(face_img[0], Image.Image):
|
154 |
+
image_list = [np.array(img) for img in face_img]
|
155 |
+
elif isinstance(face_img, np.ndarray):
|
156 |
+
if face_img.ndim == 4:
|
157 |
+
image_list = [img for img in face_img]
|
158 |
+
|
159 |
+
results = []
|
160 |
+
|
161 |
+
for image in tqdm(image_list):
|
162 |
+
keypoints = self._inference(image)
|
163 |
+
results.append(keypoints)
|
164 |
+
|
165 |
+
return results
|
166 |
+
|
167 |
+
def compute_peaks_from_heatmaps(self, heatmaps: np.ndarray) -> np.ndarray:
|
168 |
+
"""
|
169 |
+
Compute the peaks from the heatmaps.
|
170 |
+
|
171 |
+
Parameters
|
172 |
+
----------
|
173 |
+
heatmaps : np.ndarray
|
174 |
+
The heatmaps.
|
175 |
+
|
176 |
+
Returns
|
177 |
+
-------
|
178 |
+
np.ndarray
|
179 |
+
The peaks, which are keypoints.
|
180 |
+
"""
|
181 |
+
|
182 |
+
all_peaks = []
|
183 |
+
for part in range(heatmaps.shape[0]):
|
184 |
+
map_ori = heatmaps[part].copy()
|
185 |
+
binary = np.ascontiguousarray(map_ori > 0.05, dtype=np.uint8)
|
186 |
+
|
187 |
+
if np.sum(binary) == 0:
|
188 |
+
all_peaks.append([-1, -1])
|
189 |
+
continue
|
190 |
+
|
191 |
+
positions = np.where(binary > 0.5)
|
192 |
+
intensities = map_ori[positions]
|
193 |
+
mi = np.argmax(intensities)
|
194 |
+
y, x = positions[0][mi], positions[1][mi]
|
195 |
+
all_peaks.append([x, y])
|
196 |
+
|
197 |
+
return np.array(all_peaks)
|