File size: 34,674 Bytes
6705032 ac3312e 6705032 0cea2c9 6705032 0e72e2e 6705032 0e72e2e 6705032 83403b0 6705032 83403b0 6705032 de6b003 6705032 405c83f 6705032 405c83f 6705032 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 |
from __future__ import absolute_import
import os
from statistics import mean
import sys
from xml.sax.handler import feature_external_ges
#import bleu
import pickle
import torch
import csv
import json
import random
import time
import logging
import argparse
#from fuzzywuzzy import fuzz
import numpy as np
from io import open
from itertools import cycle
import torch.nn as nn
from model_gen import Seq2Seq
from tqdm import tqdm, trange
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
#from sklearn.metrics import mean_squared_error
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup,
RobertaConfig, RobertaModel, RobertaTokenizer)
import pathlib
folder = str(pathlib.Path(__file__).parent.resolve())
#from sklearn.metrics import mean_absolute_error, mean_squared_error
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
divide_number = 6
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3,4,5,6,7"
class Example(object):
"""A single training/test example."""
def __init__(self,
idx,
source,
target,
cpuname,
funcname,
filename,
property,
vec,
exist,
module
):
self.idx = idx
self.source = source
self.target = target
self.cpuname = cpuname
self.funcname = funcname
self.filename = filename
self.property = property
self.vec = vec
self.exist = exist
self.module = module
def read_examples_no_bracket(filename, is_function_test):
"""Read examples from filename."""
examples = []
with open(filename, encoding="utf-8") as f:
for idx, line in enumerate(f):
if is_function_test:
if idx > 212:
break
line = line.strip()
js = json.loads(line)
if js["Stmt"].strip()[0] == "}":
continue
if js["Value"].strip().lower() == "nothing" and '#' in js['FIR']:
continue
if '1' in js['Vector'][-97:] and '#' not in js['FIR']:
continue
if 'idx' not in js:
js['idx'] = idx
code = ' '.join(js['FIR_token']).replace('\n', ' ')
code = ' '.join(code.strip().split())
nl = ' '.join(js['Stmt_token']).replace('\n', ' ')
nl = ' '.join(nl.strip().split())
if str(js['Exist']).lower() != "true" and str(js['Exist']).lower() != "false":
if int(round(float(js['Exist']))) == 1:
exist = 1
elif js["Value"].strip().lower() != "nothing":
exist = 1
else:
exist = 0
else:
if js['Exist'].lower() == "true":
exist = 1
else:
exist = 0
tem = list(js['Vector'].replace("|zm|",""))
vec = []
for t in tem:
if int(t) == 1:
vec.append(1)
else:
vec.append(0)
pro = ' '.join(js['Value_token']).replace('\n', ' ')
pro = ' '.join(pro.strip().split())
cpu = js['Target']
func = js['Func']
file = js['File']
mod = ""
if "Module" in js.keys():
mod = js["Module"]
examples.append(
Example(
idx=idx,
source=code,
target=nl,
cpuname=cpu,
funcname=func,
filename=file,
property=pro,
vec=vec,
exist=exist,
module = mod
# propertyposition = propos,
)
)
return examples
def read_examples(filename, is_function_test):
"""Read examples from filename."""
examples = []
with open(filename, encoding="utf-8") as f:
for idx, line in enumerate(f):
if is_function_test:
if idx > 212:
break
line = line.strip()
js = json.loads(line)
if 'idx' not in js:
js['idx'] = idx
code = ' '.join(js['FIR_token']).replace('\n', ' ')
code = ' '.join(code.strip().split())
nl = ' '.join(js['Stmt_token']).replace('\n', ' ')
nl = ' '.join(nl.strip().split())
if str(js['Exist']).lower() != "true" and str(js['Exist']).lower() != "false":
if int(round(float(js['Exist']))) == 1:
exist = 1
elif js["Value"].strip().lower() != "nothing":
exist = 1
else:
exist = 0
else:
if js['Exist'].lower() == "true":
exist = 1
else:
exist = 0
tem = list(js['Vector'].replace("|zm|",""))
vec = []
for t in tem:
if int(t) == 1:
vec.append(1)
else:
vec.append(0)
pro = ' '.join(js['Value_token']).replace('\n', ' ')
pro = ' '.join(pro.strip().split())
cpu = js['Target']
func = js['Func']
file = js['File']
mod = ""
if "Module" in js.keys():
mod = js["Module"]
examples.append(
Example(
idx=idx,
source=code,
target=nl,
cpuname=cpu,
funcname=func,
filename=file,
property=pro,
vec=vec,
exist=exist,
module = mod
# propertyposition = propos,
)
)
return examples
class InputFeatures(object):
"""A single training/test features for a example."""
def __init__(self,
example_id,
source_ids,
exist,
target_ids,
):
self.example_id = example_id
self.source_ids = source_ids
self.exist = exist
self.target_ids = target_ids
def convert_examples_to_features(examples, tokenizer, args, stage=None):
"""convert examples to token ids"""
features = []
for example_index, example in enumerate(examples):
# source
func_tokens = tokenizer.tokenize(example.funcname)
source_tokens = tokenizer.tokenize(
example.source)
pro_tokens = tokenizer.tokenize(example.property)
vec_tokens = example.vec
source_tokens = [tokenizer.cls_token, "<encoder-decoder>", tokenizer.sep_token, "<mask0>"] + func_tokens + [tokenizer.cls_token] + \
source_tokens + [tokenizer.cls_token] + pro_tokens + \
[tokenizer.cls_token] + vec_tokens + [tokenizer.sep_token]
source_ids = tokenizer.convert_tokens_to_ids(source_tokens)
padding_length = args.max_source_length - len(source_ids)
source_ids += [tokenizer.pad_token_id] * padding_length
target_tokens = tokenizer.tokenize(example.target)
exist = [example.exist]
target_tokens = [tokenizer.cls_token, "<mask0>"] + \
target_tokens + [tokenizer.sep_token]
target_ids = tokenizer.convert_tokens_to_ids(target_tokens)
padding_length = args.max_target_length - len(target_ids)
target_ids += [tokenizer.pad_token_id] * padding_length
features.append(
InputFeatures(
example_index,
source_ids,
exist,
target_ids,
)
)
return features
def set_seed(seed=991105):
random.seed(seed)
os.environ['PYHTONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def is_valid_parentheses(s):
cnt_bracket_small = 0
cnt_bracket_mid = 0
cnt_bracket_large = 0
new_s = ""
for p in s:
new_s += p
if p == "(":
cnt_bracket_small += 1
if p == ")":
cnt_bracket_small -= 1
if p == "[":
cnt_bracket_mid += 1
if p == "]":
cnt_bracket_mid -= 1
if p == "{":
cnt_bracket_large += 1
if p == "}":
cnt_bracket_large -= 1
if cnt_bracket_small < 0:
cnt_bracket_small = 0
new_s = new_s[:-1]
#print(new_s)
if cnt_bracket_mid < 0:
cnt_bracket_mid = 0
new_s = new_s[:-1]
#print(new_s)
if cnt_bracket_large < 0:
cnt_bracket_large = 0
new_s = new_s[:-1]
#print(new_s)
return new_s
def rewrite_pred(pred, gt_pred, gt_source, gt_value):
re_pred = pred
if is_valid_parentheses(pred).replace(" ", "") == gt_pred.replace(" ", ""):
return True, is_valid_parentheses(re_pred)
if "zmtarzm" in gt_value and gt_source.replace("#", gt_value).replace(" ", "") == gt_pred.replace(" ", ""):
return True, gt_source.replace("#", gt_value)
return False, re_pred
def vega_train_main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model: e.g. roberta-base")
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
# # Other parameters
parser.add_argument("--train_filename", default=None, type=str,
help="The train filename. Should contain the .jsonl files for this task.")
parser.add_argument("--dev_filename", default=None, type=str,
help="The dev filename. Should contain the .jsonl files for this task.")
parser.add_argument("--test_filename", default=None, type=str,
help="The test filename. Should contain the .jsonl files for this task.")
parser.add_argument("--max_source_length", default=590, type=int, # 400
help="The maximum total source sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--max_target_length", default=240, type=int, # 350
help="The maximum total target sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--do_train", action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_test", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_function_test", action='store_true',
help="Whether to run eval on the subset of the dev set.")
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument("--train_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--eval_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=6e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--beam_size", default=1, type=int,
help="beam size for beam search")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=30, type=int,
help="Total number of training epochs to perform.")
parser.add_argument('--seed', type=int, default=20230420,
help="random seed for initialization")
parser.add_argument("--mse_loss_weight", default=0.9, type=float,
help="Weight of Mean Square Error Loss.")
parser.add_argument("--ce_loss_weight", default=0.1, type=float,
help="Weight of Cross Entropy Loss.")
# print arguments
args = parser.parse_args()
# set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
args.n_gpu = torch.cuda.device_count()
args.device = device
logger.info("device: %s, n_gpu: %s", device, args.n_gpu)
# Set seed
set_seed(args.seed)
# make dir if output_dir not exist
args.output_dir = folder + "/" + args.output_dir
if os.path.exists(args.output_dir) is False:
os.makedirs(args.output_dir)
args.model_name_or_path = folder + "/" + args.model_name_or_path
if args.train_filename:
args.train_filename = folder + "/" + args.train_filename
if args.dev_filename:
args.dev_filename = folder + "/" + args.dev_filename
if args.test_filename:
args.test_filename = folder + "/" + args.test_filename
# build model
tokenizer = RobertaTokenizer.from_pretrained(args.model_name_or_path)
config = RobertaConfig.from_pretrained(args.model_name_or_path)
# import!!!you must set is_decoder as True for generation
config.is_decoder = True
encoder = RobertaModel.from_pretrained(
args.model_name_or_path, config=config)
model = Seq2Seq(encoder=encoder, decoder=encoder, config=config,
mse_loss_weight=args.mse_loss_weight, ce_loss_weight=args.ce_loss_weight,
beam_size=args.beam_size, max_length=args.max_target_length,
sos_id=tokenizer.convert_tokens_to_ids(["<mask0>"])[0], eos_id=tokenizer.sep_token_id)
model.to(args.device)
if args.n_gpu > 1:
# multi-gpu training
model = torch.nn.DataParallel(model)
if args.do_train:
# Prepare training data loader
all_examples = read_examples(args.train_filename, False)
train_examples = read_examples_no_bracket(args.train_filename, False)
train_features = convert_examples_to_features(
train_examples, tokenizer, args, stage='train')
all_source_ids = torch.tensor(
[f.source_ids for f in train_features], dtype=torch.long)
all_exists = torch.tensor(
[f.exist for f in train_features], dtype=torch.float32)
all_target_ids = torch.tensor(
[f.target_ids for f in train_features], dtype=torch.long)
train_data = TensorDataset(all_source_ids, all_exists, all_target_ids)
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler,
batch_size=args.train_batch_size // args.gradient_accumulation_steps)
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(
nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters,
lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=int(
len(train_dataloader)*args.num_train_epochs*0.1),
num_training_steps=len(train_dataloader)*args.num_train_epochs)
# Start training
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(all_examples))
logger.info(" Batch size = %d", args.train_batch_size *
args.gradient_accumulation_steps)
logger.info(" Num epoch = %d", args.num_train_epochs)
model.train()
eval_examples_all = read_examples(args.dev_filename, False)
total_eval_all = len(eval_examples_all)
patience, best_acc, losses, dev_dataset = 0, 0, [], {}
for epoch in tqdm(range(args.num_train_epochs)):
for idx, batch in enumerate(train_dataloader):
batch = tuple(t.to(device) for t in batch)
source_ids, exist, target_ids = batch
loss, _, _, mse_loss, ce_loss = model(
source_ids=source_ids, exist=exist, target_ids=target_ids)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
losses.append(loss.item())
loss.backward()
if len(losses) % args.gradient_accumulation_steps == 0:
# Update parameters
optimizer.step()
optimizer.zero_grad()
scheduler.step()
if len(losses) // args.gradient_accumulation_steps % 100 == 0:
logger.info("epoch {} step {} loss {}".format(epoch,
len(
losses)//args.gradient_accumulation_steps,
round(np.mean(losses[-100*args.gradient_accumulation_steps:]), 4)))
if args.do_eval:
# Eval model with dev dataset
if 'dev_loss' in dev_dataset:
eval_examples, eval_data = dev_dataset['dev_loss']
else:
eval_examples = read_examples_no_bracket(args.dev_filename, False)
eval_features = convert_examples_to_features(
eval_examples, tokenizer, args, stage='dev')
all_source_ids = torch.tensor(
[f.source_ids for f in eval_features], dtype=torch.long)
all_exists = torch.tensor(
[f.exist for f in eval_features], dtype=torch.float32)
all_target_ids = torch.tensor(
[f.target_ids for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(
all_source_ids, all_exists, all_target_ids)
dev_dataset['dev_loss'] = eval_examples, eval_data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(
eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", total_eval_all)
logger.info(" Batch size = %d", args.eval_batch_size)
# Start Evaling model
model.eval()
eval_loss, tokens_num = 0, 0
for batch in eval_dataloader:
batch = tuple(t.to(device) for t in batch)
source_ids, exist, target_ids = batch
with torch.no_grad():
_, loss, num, _, _ = model(
source_ids=source_ids, exist=exist, target_ids=target_ids)
eval_loss += loss.sum().item()
tokens_num += num.sum().item()
# Pring loss of dev dataset
model.train()
eval_loss = eval_loss / tokens_num
result = {'eval_ppl': round(np.exp(eval_loss), 5)}
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
logger.info(" " + "*" * 20)
# Calculate mse
if 'dev_acc' in dev_dataset:
eval_examples, eval_data = dev_dataset['dev_acc']
else:
eval_examples = read_examples_no_bracket(args.dev_filename, False)
eval_examples = random.sample(eval_examples, int(len(eval_examples) / divide_number))
eval_features = convert_examples_to_features(
eval_examples, tokenizer, args, stage='test')
all_source_ids = torch.tensor(
[f.source_ids for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_source_ids)
dev_dataset['dev_acc'] = eval_examples, eval_data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(
eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
model.eval()
pp = []
pr = []
for batch in eval_dataloader:
batch = tuple(t.to(device) for t in batch)
source_ids = batch[0]
with torch.no_grad():
preds, predicates = model(source_ids)
# convert ids to text
for pred, predicate in zip(preds, predicates):
t = pred[0].cpu().numpy()
p = predicate.float().item()
t = list(t)
#p = list(p)
tem_i = 0
if 0 in t:
for my_i in range(len(t) - 1, 0, -1):
if t[my_i] != 0:
break
tem_i -= 1
if tem_i < 0:
t = t[:tem_i]
text = tokenizer.decode(
t, clean_up_tokenization_spaces=False)
pp.append(text)
pr.append(p)
model.train()
p_wrong_list = []
v_wrong_list = []
model_predicate = []
groundtruth_predicate = []
#edit_sim = 0.0
total = int(total_eval_all / divide_number)
base_num = total - len(eval_examples)
EM = float(base_num)
EM_V = float(base_num)
EM_P = float(base_num)
cnt_v = 0
cnt_p = 0
cnt_iteration = 0
for ref, gold in zip(zip(pp, pr), eval_examples):
cnt_iteration += 1
pred = ref[0].strip()
predicate = ref[1]
if gold.property.strip().lower() != "nothing":
predicate = 1.0
else:
pred = gold.source.strip()
if 1 not in gold.vec:
predicate = 0.0
if 1 in gold.vec and gold.source.strip()[0] == '}':
predicate = 1.0
if '#' in gold.source:
predicate = 0.0
if 1 in gold.vec[-97:]:
predicate = 1.0
gt_pred = gold.target.strip()
gt_predicate = gold.exist
if pred == gt_pred and int(round(predicate)) == int(round(gt_predicate)):
EM = EM + 1.0
EM_V = EM_V + 1.0
EM_P = EM_P + 1.0
else:
if pred == gt_pred:
EM_V = EM_V + 1.0
else:
v_wrong_list.append([gold.filename, gold.funcname, gold.cpuname,\
round(predicate), gt_predicate, pred, gt_pred])
cnt_v += 1
if int(round(predicate)) == int(round(gt_predicate)):
EM_P = EM_P + 1.0
else:
cnt_p += 1
p_wrong_list.append([gold.filename, gold.funcname, gold.cpuname,\
round(predicate), gt_predicate, pred, gt_pred])
model_predicate.append(predicate)
groundtruth_predicate.append(gt_predicate)
dev_acc = round((100*EM/total), 2)
dev_acc_v = round((100*EM_V/total), 2)
dev_acc_p = round((100*EM_P/total), 2)
logger.info(" %s = %s " % ("Current Acc", str(dev_acc)))
logger.info(" "+"*"*20)
logger.info(" %s = %s " % ("Current Acc V", str(dev_acc_v)))
logger.info(" "+"*"*20)
logger.info(" %s = %s " % ("Current Acc P", str(dev_acc_p)))
logger.info(" "+"*"*20)
if dev_acc > best_acc:
best_acc = dev_acc
# Save best checkpoint for best bleu
output_dir = os.path.join(
args.output_dir, 'checkpoint-best-acc')
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(
model, 'module') else model # Only save the model it-self
output_model_file = os.path.join(
output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
logger.info(" Best acc:%s", best_acc)
logger.info(" " + "*" * 20)
if args.do_test or args.do_function_test:
if os.path.exists(args.output_dir+"/result.jsonl"):
os.unlink(args.output_dir+"/result.jsonl")
checkpoint_prefix = 'checkpoint-best-acc/pytorch_model.bin'
output_dir = os.path.join(args.output_dir, checkpoint_prefix)
model_to_load = model.module if hasattr(model, 'module') else model
model_to_load.load_state_dict(torch.load(output_dir), strict=False)
eval_examples_all = read_examples(args.test_filename, args.do_function_test)
eval_examples = read_examples_no_bracket(args.test_filename, args.do_function_test)
total_all = len(eval_examples_all)
base_test = total_all - len(eval_examples)
eval_features = convert_examples_to_features(
eval_examples, tokenizer, args, stage='test')
all_source_ids = torch.tensor(
[f.source_ids for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_source_ids)
eval_examples_idx_lis = []
for ee in eval_examples:
eval_examples_idx_lis.append(ee.idx)
# Calculate mse
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(
eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
model.eval()
pp = []
pr = []
if not args.do_function_test:
print("Start Inferencing!")
else:
print("Start Function Test Inferencing!")
for batch in eval_dataloader:
batch = tuple(t.to(device) for t in batch)
source_ids = batch[0]
with torch.no_grad():
preds, predicates = model(source_ids)
# convert ids to text
for pred, predicate in zip(preds, predicates):
t = pred[0].cpu().numpy()
p = predicate.float().item()
t = list(t)
tem_i = 0
if 0 in t:
for my_i in range(len(t)-1, 0, -1):
if t[my_i] != 0:
break
tem_i -= 1
if tem_i < 0:
t = t[:tem_i]
text = tokenizer.decode(
t, clean_up_tokenization_spaces=False)
pp.append(text)
pr.append(p)
if not args.do_function_test:
print("Finished Inferencing.")
else:
print("Finished Function Test Inferencing.")
model.train()
EM = float(base_test)
EM_P = float(base_test)
EM_V = float(base_test)
p_wrong_list = []
v_wrong_list = []
edit_sim = 0.0
total = total_all
res_dic = {}
model_predicate = []
groundtruth_predicate = []
for ref, gold in zip(zip(pp, pr), eval_examples):
pred = ref[0].strip()
predicate = ref[1]
if gold.property.strip().lower() != "nothing":
predicate = 1.0
else:
pred = gold.source.strip()
if 1 not in gold.vec:
predicate = 0.0
if 1 in gold.vec and gold.source.strip()[0] == '}':
predicate = 1.0
if '#' in gold.source:
predicate = 0.0
if 1 in gold.vec[-97:]:
predicate = 1.0
gt_pred = gold.target.strip()
gt_predicate = gold.exist
is_re = False
gt_value = gold.property
gt_source = gold.source
if pred == gt_pred and round(predicate) == gt_predicate:
EM += 1
if pred == gt_pred and round(predicate) != gt_predicate:
p_wrong_list.append([gold.filename, gold.funcname, gold.cpuname, gold.idx,
round(predicate), gt_predicate, pred, gt_pred])
if pred != gt_pred and round(predicate) == gt_predicate:
is_re, re_pred = rewrite_pred(pred, gt_pred, gt_source, gt_value)
if not is_re:
v_wrong_list.append([gold.filename, gold.funcname, gold.cpuname, gold.idx,
round(predicate), gt_predicate, pred, gt_pred])
else:
pred = re_pred
EM += 1
if pred != gt_pred and round(predicate) != gt_predicate:
v_wrong_list.append([gold.filename, gold.funcname, gold.cpuname, gold.idx,
round(predicate), gt_predicate, pred, gt_pred])
p_wrong_list.append([gold.filename, gold.funcname, gold.cpuname, gold.idx,
round(predicate), gt_predicate, pred, gt_pred])
tem_dic = {}
tem_dic["idx"] = gold.idx
tem_dic["vega_code"] = pred
tem_dic["ans_code"] = gt_pred
tem_dic["vega_pre"] = round(predicate)
tem_dic["ans_pre"] = gt_predicate
tem_dic["File"] = gold.filename
tem_dic["Func"] = gold.funcname
tem_dic["Module"] = gold.module
tem_dic["Target"] = gold.cpuname
res_dic[gold.idx] = tem_dic
if pred == gt_pred:
EM_V += 1
if round(predicate) == gt_predicate:
EM_P += 1
model_predicate.append(predicate)
groundtruth_predicate.append(gt_predicate)
dev_acc = round((100 * EM / total), 2)
dev_acc_v = round((100 * EM_V / total), 2)
dev_acc_p = round((100 * EM_P / total), 2)
predictions = []
with open(args.output_dir+"/result.jsonl", 'a') as f2:
for ee in eval_examples_all:
if ee.idx not in eval_examples_idx_lis:
dic = {}
dic["idx"] = ee.idx
dic["vega_code"] = ee.source.replace("zmtarzm", ee.cpuname)
dic["ans_code"] = ee.source.replace("zmtarzm", ee.cpuname)
dic["vega_pre"] = ee.exist
dic["ans_pre"] = ee.exist
dic["File"] = ee.filename
dic["Func"] = ee.funcname
dic["Module"] = ee.module
dic["Target"] = ee.cpuname
dic["Stable"] = "True"
else:
dic = {}
dic["idx"] = res_dic[ee.idx]["idx"]
dic["vega_code"] = res_dic[ee.idx]["vega_code"].replace("zmtarzm", ee.cpuname)
dic["ans_code"] = res_dic[ee.idx]["ans_code"].replace("zmtarzm", ee.cpuname)
dic["vega_pre"] = res_dic[ee.idx]["vega_pre"]
dic["ans_pre"] = res_dic[ee.idx]["ans_pre"]
dic["File"] = res_dic[ee.idx]["File"]
dic["Func"] = res_dic[ee.idx]["Func"]
dic["Module"] = res_dic[ee.idx]["Module"]
dic["Target"] = res_dic[ee.idx]["Target"]
dic["Stable"] = "False"
json.dump(dic, f2)
f2.write('\n')
if __name__ == "__main__":
vega_train_main() |