File size: 6,362 Bytes
b3a805b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
---
license: apache-2.0
language:
- en
metrics:
- code_eval
library_name: adapter-transformers
pipeline_tag: text-generation
tags:
- code
---
# Ddroidlabs-mixture-of-agents
small agentic model designed as a coding assistant

# Mixture of Agents Model (MAM) - Full-Stack Development Team

## Overview

The Mixture of Agents Model (MAM) is an AI-driven full-stack development team that integrates specialized agents for front-end development, back-end development, database management, DevOps, and project management. This unified model leverages a pretrained transformer and fine-tuned datasets to handle a variety of software development tasks efficiently.

## Folder Structure

```
mixture_of_agents/
β”œβ”€β”€ app.py
β”œβ”€β”€ colab_notebook.ipynb
β”œβ”€β”€ dataset/
β”‚   └── code_finetune_dataset.json
β”œβ”€β”€ agents/
β”‚   β”œβ”€β”€ front_end_agent.py
β”‚   β”œβ”€β”€ back_end_agent.py
β”‚   β”œβ”€β”€ database_agent.py
β”‚   β”œβ”€β”€ devops_agent.py
β”‚   └── project_management_agent.py
β”œβ”€β”€ integration/
β”‚   └── integration_layer.py
└── model/
    β”œβ”€β”€ load_pretrained_model.py
    └── fine_tune_model.py
```

## Setup Instructions

### Prerequisites

- Python 3.7 or higher
- Flask
- Google Colab account (for running the notebook)
- Libraries: `transformers`, `datasets`, `numpy`, `pandas`

### Installation

1. **Clone the Repository:**
   ```bash
   git clone https://github.com/your-repo/mixture_of_agents.git
   cd mixture_of_agents
   ```

2. **Install Required Libraries:**
   ```bash
   pip install -r requirements.txt
   ```

3. **Upload to Google Drive:**
   - Upload the `mixture_of_agents` folder to your Google Drive.

4. **Open Colab Notebook:**
   - Open `colab_notebook.ipynb` in Google Colab.

### Running the Model

1. **Mount Google Drive:**
   - Mount your Google Drive in Colab by running the first cell of the notebook:
     ```python
     from google.colab import drive
     drive.mount('/content/drive')
     ```

2. **Install Necessary Packages:**
   - Install the required packages in the Colab environment:
     ```python
     !pip install transformers datasets
     ```

3. **Load and Fine-Tune the Model:**
   - Follow the steps in the Colab notebook to load the pretrained model and fine-tune it using the provided dataset:
     ```python
     from model.load_pretrained_model import load_model_and_tokenizer
     model, tokenizer = load_model_and_tokenizer()

     from model.fine_tune_model import fine_tune_model
     fine_tune_model(model, tokenizer, '/content/drive/MyDrive/mixture_of_agents/dataset/code_finetune_dataset.json')
     ```

4. **Initialize and Use the Agents:**
   - Initialize the agents and use the integration layer to process tasks:
     ```python
     from agents.front_end_agent import FrontEndAgent
     from agents.back_end_agent import BackEndAgent
     from agents.database_agent import DatabaseAgent
     from agents.devops_agent import DevOpsAgent
     from agents.project_management_agent import ProjectManagementAgent
     from integration.integration_layer import IntegrationLayer

     front_end_agent = FrontEndAgent(model, tokenizer)
     back_end_agent = BackEndAgent(model, tokenizer)
     database_agent = DatabaseAgent(model, tokenizer)
     devops_agent = DevOpsAgent(model, tokenizer)
     project_management_agent = ProjectManagementAgent(model, tokenizer)
     integration_layer = IntegrationLayer(front_end_agent, back_end_agent, database_agent, devops_agent, project_management_agent)

     task_data = {'task': 'Create a responsive website layout'}
     result = integration_layer.process_task('front_end', task_data)
     print(result)
     ```

### Running the Web Application

1. **Ensure All Agent Files and Integration Layer Are Available:**
   - Make sure the `agents` and `integration` directories with their respective Python files (`front_end_agent.py`, `back_end_agent.py`, `database_agent.py`, `devops_agent.py`, `project_management_agent.py`, and `integration_layer.py`) are in the same directory as `app.py`.

2. **Run the Application:**
   - Execute the `app.py` script to start the Flask web server:
     ```bash
     python app.py
     ```

3. **Using the API:**
   - Open your web browser and navigate to `http://127.0.0.1:5000/` to see the welcome message.
   - Use a tool like `curl` or Postman to send a POST request to the `/process` endpoint with JSON payload to process tasks.

### Example POST Request
You can use the following example JSON payload to test the `/process` endpoint:

```json
{
  "task_type": "front_end",
  "task_data": {
    "task": "Create a responsive website layout"
  }
}
```

**Using `curl`:**
```bash
curl -X POST http://127.0.0.1:5000/process -H "Content-Type: application/json" -d '{"task_type": "front_end", "task_data": {"task": "Create a responsive website layout"}}'
```

## Agent Descriptions

### Front-End Agent
- **File:** `agents/front_end_agent.py`
- **Responsibilities:** UI/UX design, HTML, CSS, JavaScript frameworks (React, Vue).

### Back-End Agent
- **File:** `agents/back_end_agent.py`
- **Responsibilities:** Server-side logic, API development, frameworks like Node.js, Django.

### Database Agent
- **File:** `agents/database_agent.py`
- **Responsibilities:** Database design, query optimization, data migration.

### DevOps Agent
- **File:** `agents/devops_agent.py`
- **Responsibilities:** CI/CD pipelines, server management, deployment automation.

### Project Management Agent
- **File:** `agents/project_management_agent.py`
- **Responsibilities:** Requirement gathering, task management, progress tracking.

### Integration Layer
- **File:** `integration/integration_layer.py`
- **Responsibilities:** Ensures seamless communication and coordination between agents.

## Fine-Tuning Dataset

### Dataset File
- **File:** `dataset/code_finetune_dataset.json`
- **Description:** Contains examples of various coding tasks to fine-tune the model for development-related tasks.

## Contributing

Contributions are welcome! Please fork the repository and create a pull request with your changes. Ensure your code follows the project's style guidelines and includes appropriate tests.

## License

This project is licensed under the apache-2.0  License.

## Contact

For any questions or issues, please open an issue on GitHub or contact the repository maintainer.