File size: 6,828 Bytes
7b7289a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "7f817eb8-9b0a-4340-9c36-8d3eb7f55f97",
   "metadata": {},
   "outputs": [],
   "source": [
    "import gensim\n",
    "\n",
    "# Load the model\n",
    "ft_model = gensim.models.FastText.load(\"ft_model1.model\")\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "c91f18bf-21e1-4bca-aad6-a4441c079f8f",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['vana', 'vakomana']\n",
      "['vasikana']\n"
     ]
    }
   ],
   "source": [
    "expression = 'vana + vakomana - vasikana'\n",
    "\n",
    "positive = []\n",
    "negative = []\n",
    "\n",
    "parts = expression.replace('-', '+-').split('+')\n",
    "\n",
    "for part in parts:\n",
    "    part = part.strip()\n",
    "    if part.startswith('-'):\n",
    "        negative.append(part[1:].strip())\n",
    "    elif part:\n",
    "        positive.append(part)\n",
    "\n",
    "print(positive)\n",
    "print(negative)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "a9ffbb58-f536-49e5-8e06-f7a5c9b52326",
   "metadata": {},
   "outputs": [
    {
     "ename": "ValueError",
     "evalue": "output array is read-only",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mValueError\u001b[0m                                Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[7], line 6\u001b[0m\n\u001b[1;32m      4\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m word \u001b[38;5;129;01min\u001b[39;00m positive[\u001b[38;5;241m1\u001b[39m:]:\n\u001b[1;32m      5\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m word \u001b[38;5;129;01min\u001b[39;00m ft_model\u001b[38;5;241m.\u001b[39mwv:\n\u001b[0;32m----> 6\u001b[0m         result_vector \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m ft_model\u001b[38;5;241m.\u001b[39mwv\u001b[38;5;241m.\u001b[39mget_vector(word)\n\u001b[1;32m      7\u001b[0m     \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m      8\u001b[0m         \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mWord \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mword\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m not in vocabulary\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
      "\u001b[0;31mValueError\u001b[0m: output array is read-only"
     ]
    }
   ],
   "source": [
    "\n",
    "result_vector = ft_model.wv.get_vector(positive[0])  \n",
    "\n",
    "# Add vectors for positive words\n",
    "for word in positive[1:]:\n",
    "    if word in ft_model.wv:\n",
    "        result_vector += ft_model.wv.get_vector(word)\n",
    "    else:\n",
    "        raise KeyError(f\"Word '{word}' not in vocabulary\")\n",
    "\n",
    "# Subtract vectors for negative words\n",
    "for word in negative:\n",
    "    if word in ft_model.wv:\n",
    "        result_vector -= ft_model.wv.get_vector(word)\n",
    "    else:\n",
    "        raise KeyError(f\"Word '{word}' not in vocabulary\")\n",
    "\n",
    "# Find similar words\n",
    "result = ft_model.wv.most_similar(positive=[result_vector], topn=top_n)\n",
    "\n",
    "# Format the results\n",
    "response = [{'word': word, 'similarity': similarity} for word, similarity in result]\n",
    "\n",
    "\n",
    "print(response)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "a9c823fa-d1f8-4124-8e60-418986eea4a3",
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "1edd0ca0-38b9-44c8-beb3-25ebc2793223",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[{'word': 'vana', 'similarity': 0.92390615}, {'word': 'nhevana', 'similarity': 0.7112871}, {'word': 'twevana', 'similarity': 0.6789861}, {'word': 'vanajib', 'similarity': 0.66515744}, {'word': 'svana', 'similarity': 0.6477824}]\n"
     ]
    }
   ],
   "source": [
    "top_n = 5\n",
    "if not positive:\n",
    "    raise ValueError(\"Positive word list is empty.\")\n",
    "if not isinstance(positive, list) or not isinstance(negative, list):\n",
    "    raise TypeError(\"Positive and negative should be lists.\")\n",
    "\n",
    "# Initialize result_vector with a writable copy of the first positive word vector\n",
    "result_vector = ft_model.wv.get_vector(positive[0]).copy()  \n",
    "\n",
    "# Add vectors for positive words\n",
    "for word in positive[1:]:\n",
    "    if word in ft_model.wv:\n",
    "        result_vector += ft_model.wv.get_vector(word)\n",
    "    else:\n",
    "        raise KeyError(f\"Word '{word}' not in vocabulary\")\n",
    "\n",
    "# Subtract vectors for negative words\n",
    "for word in negative:\n",
    "    if word in ft_model.wv:\n",
    "        result_vector -= ft_model.wv.get_vector(word)\n",
    "    else:\n",
    "        raise KeyError(f\"Word '{word}' not in vocabulary\")\n",
    "\n",
    "# Function to compute cosine similarity between vectors\n",
    "def cosine_similarity(vec1, vec2):\n",
    "    return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))\n",
    "\n",
    "# Compute cosine similarities between result_vector and all words in the model's vocabulary\n",
    "cosine_similarities = []\n",
    "for word in ft_model.wv.index_to_key:\n",
    "    word_vector = ft_model.wv.get_vector(word)\n",
    "    similarity = cosine_similarity(result_vector, word_vector)\n",
    "    cosine_similarities.append((word, similarity))\n",
    "\n",
    "# Sort by similarity and return top_n results\n",
    "sorted_similarities = sorted(cosine_similarities, key=lambda x: x[1], reverse=True)\n",
    "top_results = sorted_similarities[:top_n]\n",
    "\n",
    "# Format the results\n",
    "response = [{'word': word, 'similarity': similarity} for word, similarity in top_results]\n",
    "print(response)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7dbc6092-275c-45cf-b137-29908f3d2b73",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}