--- license: mit base_model: HuggingFaceH4/zephyr-7b-beta tags: - generated_from_trainer model-index: - name: zephyr-7b-dpo-lora results: [] --- # zephyr-7b-dpo-lora This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6874 - Rewards/chosen: 0.0803 - Rewards/rejected: 0.0298 - Rewards/accuracies: 1.0 - Rewards/margins: 0.0505 - Logps/rejected: -101.0604 - Logps/chosen: -102.9630 - Logits/rejected: -2.2160 - Logits/chosen: -2.1724 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 32 - total_train_batch_size: 512 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6931 | 0.8 | 1 | 0.6931 | 0.0 | 0.0 | 0.0 | 0.0 | -101.3584 | -103.7664 | -2.2157 | -2.1717 | | 0.6931 | 1.6 | 2 | 0.6948 | 0.0296 | 0.0079 | 0.5 | 0.0217 | -101.2790 | -103.4700 | -2.2147 | -2.1715 | | 0.6931 | 2.4 | 3 | 0.6913 | 0.0277 | 0.0090 | 0.75 | 0.0188 | -101.2689 | -103.4891 | -2.2153 | -2.1709 | | 0.6931 | 4.0 | 5 | 0.6874 | 0.0803 | 0.0298 | 1.0 | 0.0505 | -101.0604 | -102.9630 | -2.2160 | -2.1724 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0 - Datasets 2.14.6 - Tokenizers 0.14.1