--- language: en license: mit base_model: google-bert/bert-large-uncased tags: - token-classification - bert-large-uncased datasets: - disham993/ElectricalNER metrics: - epoch: 1.0 - eval_precision: 0.9082058414464534 - eval_recall: 0.928949656208014 - eval_f1: 0.9184606368431334 - eval_accuracy: 0.9632122370936902 - eval_runtime: 2.7169 - eval_samples_per_second: 555.414 - eval_steps_per_second: 8.834 --- # disham993/electrical-ner-bert-large ## Model description This model is fine-tuned from [google-bert/bert-large-uncased](https://huggingface.co/google-bert/bert-large-uncased) for token-classification tasks. ## Training Data The model was trained on the disham993/ElectricalNER dataset. ## Model Details - **Base Model:** google-bert/bert-large-uncased - **Task:** token-classification - **Language:** en - **Dataset:** disham993/ElectricalNER ## Training procedure ### Training hyperparameters [Please add your training hyperparameters here] ## Evaluation results ### Metrics\n- epoch: 1.0\n- eval_precision: 0.9082058414464534\n- eval_recall: 0.928949656208014\n- eval_f1: 0.9184606368431334\n- eval_accuracy: 0.9632122370936902\n- eval_runtime: 2.7169\n- eval_samples_per_second: 555.414\n- eval_steps_per_second: 8.834 ## Usage ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("disham993/electrical-ner-bert-large") model = AutoModel.from_pretrained("disham993/electrical-ner-bert-large") ``` ## Limitations and bias [Add any known limitations or biases of the model] ## Training Infrastructure [Add details about training infrastructure used] ## Last update 2024-12-30