File size: 57,921 Bytes
2795186 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 |
"""
Generate a base transaction graph used in the simulator
"""
import networkx as nx
import numpy as np
import itertools
import random
import csv
import json
import os
import sys
import logging
import cProfile
from collections import Counter, defaultdict
from amlsim.nominator import Nominator
from amlsim.normal_model import NormalModel
from amlsim.random_amount import RandomAmount
from amlsim.rounded_amount import RoundedAmount
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# Attribute keys
MAIN_ACCT_KEY = "main_acct" # Main account ID (SAR typology subgraph attribute)
IS_SAR_KEY = "is_sar" # SAR flag (account vertex attribute)
DEFAULT_MARGIN_RATIO = 0.1 # Each member will keep this ratio of the received amount
# Utility functions parsing values
def parse_int(value):
""" Convert string to int
:param value: string value
:return: int value if the parameter can be converted to str, otherwise None
"""
try:
return int(value)
except (ValueError, TypeError):
return None
def parse_float(value):
""" Convert string to amount (float)
:param value: string value
:return: float value if the parameter can be converted to float, otherwise None
"""
try:
return float(value)
except (ValueError, TypeError):
return None
def parse_flag(value):
""" Convert string to boolean (True or false)
:param value: string value
:return: True if the value is equal to "true" (case-insensitive), otherwise False
"""
return type(value) == str and value.lower() == "true"
def get_positive_or_none(value):
""" Get positive value or None (used to parse simulation step parameters)
:param value: Numerical value or None
:return: If the value is positive, return this value. Otherwise, return None.
"""
if value is None:
return None
else:
return value if value > 0 else None
def directed_configuration_model(_in_deg, _out_deg, seed=0):
"""Generate a directed random graph with the given degree sequences without self loop.
Based on nx.generators.degree_seq.directed_configuration_model
:param _in_deg: Each list entry corresponds to the in-degree of a node.
:param _out_deg: Each list entry corresponds to the out-degree of a node.
:param seed: Seed for random number generator
:return: MultiDiGraph without self loop
"""
if not sum(_in_deg) == sum(_out_deg):
raise nx.NetworkXError('Invalid degree sequences. Sequences must have equal sums.')
random.seed(seed)
n_in = len(_in_deg)
n_out = len(_out_deg)
if n_in < n_out:
_in_deg.extend((n_out - n_in) * [0])
else:
_out_deg.extend((n_in - n_out) * [0])
num_nodes = len(_in_deg)
_g = nx.empty_graph(num_nodes, nx.MultiDiGraph())
if num_nodes == 0 or max(_in_deg) == 0:
return _g # No edges exist
in_tmp_list = list()
out_tmp_list = list()
for n in _g.nodes():
in_tmp_list.extend(_in_deg[n] * [n])
out_tmp_list.extend(_out_deg[n] * [n])
random.shuffle(in_tmp_list)
random.shuffle(out_tmp_list)
num_edges = len(in_tmp_list)
for i in range(num_edges):
_src = out_tmp_list[i]
_dst = in_tmp_list[i]
if _src == _dst: # ID conflict causes self-loop
for j in range(i + 1, num_edges):
if _src != in_tmp_list[j]:
in_tmp_list[i], in_tmp_list[j] = in_tmp_list[j], in_tmp_list[i] # Swap ID
break
_g.add_edges_from(zip(out_tmp_list, in_tmp_list))
for idx, (_src, _dst) in enumerate(_g.edges()):
if _src == _dst:
logger.warning("Self loop from/to %d at %d" % (_src, idx))
return _g
def get_degrees(deg_csv, num_v):
"""
:param deg_csv: Degree distribution parameter CSV file
:param num_v: Number of total account vertices
:return: In-degree and out-degree sequence list
"""
with open(deg_csv, "r") as rf: # Load in/out-degree sequences from parameter CSV file for each account
reader = csv.reader(rf)
next(reader)
return get_in_and_out_degrees(reader, num_v)
def get_in_and_out_degrees(iterable, num_v):
_in_deg = list() # In-degree sequence
_out_deg = list() # Out-degree sequence
for row in iterable:
if row[0].startswith("#"):
continue
count = int(row[0])
_in_deg.extend([int(row[1])] * count)
_out_deg.extend([int(row[2])] * count)
in_len, out_len = len(_in_deg), len(_out_deg)
if in_len != out_len:
raise ValueError("The length of in-degree (%d) and out-degree (%d) sequences must be same."
% (in_len, out_len))
total_in_deg, total_out_deg = sum(_in_deg), sum(_out_deg)
if total_in_deg != total_out_deg:
raise ValueError("The sum of in-degree (%d) and out-degree (%d) must be same."
% (total_in_deg, total_out_deg))
if num_v % in_len != 0:
raise ValueError("The number of total accounts (%d) "
"must be a multiple of the degree sequence length (%d)."
% (num_v, in_len))
repeats = num_v // in_len
_in_deg = _in_deg * repeats
_out_deg = _out_deg * repeats
return _in_deg, _out_deg
class TransactionGenerator:
def __init__(self, conf, sim_name=None):
"""Initialize transaction network from parameter files.
:param conf_file: JSON file as configurations
:param sim_name: Simulation name (overrides the content in the `conf_json`)
"""
self.g = nx.DiGraph() # Transaction graph object
self.num_accounts = 0 # Number of total accounts
self.hubs = set() # Hub account vertices (main account candidates of AML typology subgraphs)
self.attr_names = list() # Additional account attribute names
self.bank_to_accts = defaultdict(set) # Bank ID -> account set
self.acct_to_bank = dict() # Account ID -> bank ID
self.normal_model_counts = dict()
self.normal_models = list()
self.normal_model_id = 1
self.conf = conf
general_conf = self.conf["general"]
# Set random seed
seed = general_conf.get("random_seed")
env_seed = os.getenv("RANDOM_SEED")
if env_seed is not None:
seed = env_seed # Overwrite random seed if specified as an environment variable
self.seed = seed if seed is None else int(seed)
np.random.seed(self.seed)
random.seed(self.seed)
logger.info("Random seed: " + str(self.seed))
# Get simulation name
if sim_name is None:
sim_name = general_conf["simulation_name"]
logger.info("Simulation name: " + sim_name)
self.total_steps = parse_int(general_conf["total_steps"])
# Set default amounts, steps and model ID
default_conf = self.conf["default"]
self.default_min_amount = parse_float(default_conf.get("min_amount"))
self.default_max_amount = parse_float(default_conf.get("max_amount"))
self.default_min_balance = parse_float(default_conf.get("min_balance"))
self.default_max_balance = parse_float(default_conf.get("max_balance"))
self.default_start_step = parse_int(default_conf.get("start_step"))
self.default_end_step = parse_int(default_conf.get("end_step"))
self.default_start_range = parse_int(default_conf.get("start_range"))
self.default_end_range = parse_int(default_conf.get("end_range"))
self.default_model = parse_int(default_conf.get("transaction_model"))
# The ratio of amount intermediate accounts receive
self.margin_ratio = parse_float(default_conf.get("margin_ratio", DEFAULT_MARGIN_RATIO))
if not 0.0 <= self.margin_ratio <= 1.0:
raise ValueError("Margin ratio in AML typologies (%f) must be within [0.0, 1.0]" % self.margin_ratio)
self.default_bank_id = default_conf.get("bank_id") # Default bank ID if not specified at parameter files
# Get input file names and properties
input_conf = self.conf["input"]
self.input_dir = input_conf["directory"] # The directory name of input files
self.account_file = input_conf["accounts"] # Account list file
self.alert_file = input_conf["alert_patterns"] # AML typology definition file
self.normal_models_file = input_conf["normal_models"] # Normal models definition file
self.degree_file = input_conf["degree"] # Degree distribution file
self.type_file = input_conf["transaction_type"] # Transaction type
self.is_aggregated = input_conf["is_aggregated_accounts"] # Flag whether the account list is aggregated
# Get output file names
output_conf = self.conf["temporal"] # The output directory of the graph generator is temporal one
self.output_dir = os.path.join(output_conf["directory"], sim_name) # The directory name of temporal files
self.out_tx_file = output_conf["transactions"] # All transaction list CSV file
self.out_account_file = output_conf["accounts"] # All account list CSV file
self.out_alert_member_file = output_conf["alert_members"] # Account list of AML typology members CSV file
self.out_normal_models_file = output_conf["normal_models"] # List of normal models CSV file
# Other properties for the transaction graph generator
other_conf = self.conf["graph_generator"]
self.degree_threshold = parse_int(other_conf["degree_threshold"]) # Degree for candidates of main accounts
high_risk_countries_str = other_conf.get("high_risk_countries", "")
high_risk_business_str = other_conf.get("high_risk_business", "")
self.high_risk_countries = set(high_risk_countries_str.split(",")) # List of high-risk country codes
self.high_risk_business = set(high_risk_business_str.split(",")) # List of high-risk business types
self.edge_id = 0 # Edge ID. Formerly Transaction ID
self.alert_id = 0 # Alert ID from the alert parameter file
self.alert_groups = dict() # Alert ID and alert transaction subgraph
# TODO: Move the mapping of AML pattern to configuration JSON file
self.alert_types = {"fan_out": 1, "fan_in": 2, "cycle": 3, "bipartite": 4, "stack": 5,
"random": 6, "scatter_gather": 7, "gather_scatter": 8} # Pattern name and model ID
self.acct_file = os.path.join(self.input_dir, self.account_file)
def get_types(type_csv):
tx_types = list()
with open(type_csv, "r") as _rf:
reader = csv.reader(_rf)
next(reader)
for row in reader:
if row[0].startswith("#"):
continue
ttype = row[0]
tx_types.extend([ttype] * int(row[1]))
return tx_types
self.tx_types = get_types(os.path.join(self.input_dir, self.type_file))
def check_hub_exists(self):
"""Validate whether one or more hub accounts exist as main accounts of AML typologies
"""
if not self.hubs:
raise ValueError("No main account candidates found. "
"Please try again with smaller value of the 'degree_threshold' parameter in conf.json.")
def set_main_acct_candidates(self):
""" Set self.hubs to be a set of hub nodes
Throw an error if not done successfully.
"""
hub_list = self.hub_nodes()
self.hubs = set(hub_list)
self.check_hub_exists()
def hub_nodes(self):
"""Choose hub accounts with larger degree than the specified threshold
as the main account candidates of alert transaction sets
"""
nodes = [n for n in self.g.nodes() # Hub vertices (with large in/out degrees)
if self.degree_threshold <= self.g.in_degree(n)
or self.degree_threshold <= self.g.out_degree(n)]
return nodes
def check_account_exist(self, aid):
"""Validate an existence of a specified account. If absent, it raises KeyError.
:param aid: Account ID
"""
if not self.g.has_node(aid):
raise KeyError("Account %s does not exist" % str(aid))
def check_account_absent(self, aid):
"""Validate an absence of a specified account
:param aid: Account ID
:return: True if an account of the specified ID is not yet added
"""
if self.g.has_node(aid):
logger.warning("Account %s already exists" % str(aid))
return False
else:
return True
def get_all_bank_ids(self):
"""Get a list of all bank IDs
:return: Bank ID list
"""
return list(self.bank_to_accts.keys())
def get_typology_members(self, num, bank_id=""):
"""Choose accounts randomly as members of AML typologies from one or multiple banks.
:param num: Number of total account vertices (including the main account)
:param bank_id: If specified, it chooses members from a single bank with the ID.
If empty (default), it chooses members from all banks randomly.
:return: Main account and list of member account IDs
"""
if num <= 1:
raise ValueError("The number of members must be more than 1")
if bank_id in self.bank_to_accts: # Choose members from the same bank as the main account
bank_accts = self.bank_to_accts[bank_id]
main_candidates = self.hubs & bank_accts
main_acct = random.sample(main_candidates, 1)[0]
self.remove_typology_candidate(main_acct)
sub_accts = random.sample(bank_accts, num - 1)
for n in sub_accts:
self.remove_typology_candidate(n)
members = [main_acct] + sub_accts
return main_acct, members
elif bank_id == "": # Choose members from all accounts
self.check_hub_exists()
main_acct = random.sample(self.hubs, 1)[0]
self.remove_typology_candidate(main_acct)
sub_accts = random.sample(self.acct_to_bank.keys(), num - 1)
for n in sub_accts:
self.remove_typology_candidate(n)
members = [main_acct] + sub_accts
return main_acct, members
else:
raise KeyError("No such bank ID: %s" % bank_id)
def load_account_list(self):
"""Load and add account vertices from a CSV file
"""
if self.is_aggregated:
self.load_account_list_param()
else:
self.load_account_list_raw()
def load_account_list_raw(self):
"""Load and add account vertices from a CSV file with raw account info
header: uuid,seq,first_name,last_name,street_addr,city,state,zip,gender,phone_number,birth_date,ssn
:param acct_file: Raw account list file path
"""
if self.default_min_balance is None:
raise KeyError("Option 'default_min_balance' is required to load raw account list")
min_balance = self.default_min_balance
if self.default_max_balance is None:
raise KeyError("Option 'default_max_balance' is required to load raw account list")
max_balance = self.default_max_balance
start_day = get_positive_or_none(self.default_start_step)
end_day = get_positive_or_none(self.default_end_step)
start_range = get_positive_or_none(self.default_start_range)
end_range = get_positive_or_none(self.default_end_range)
default_model = self.default_model if self.default_model is not None else 1
self.attr_names.extend(["first_name", "last_name", "street_addr", "city", "state", "zip",
"gender", "phone_number", "birth_date", "ssn", "lon", "lat"])
with open(self.acct_file, "r") as rf:
reader = csv.reader(rf)
header = next(reader)
name2idx = {n: i for i, n in enumerate(header)}
idx_aid = name2idx["uuid"]
idx_first_name = name2idx["first_name"]
idx_last_name = name2idx["last_name"]
idx_street_addr = name2idx["street_addr"]
idx_city = name2idx["city"]
idx_state = name2idx["state"]
idx_zip = name2idx["zip"]
idx_gender = name2idx["gender"]
idx_phone_number = name2idx["phone_number"]
idx_birth_date = name2idx["birth_date"]
idx_ssn = name2idx["ssn"]
idx_lon = name2idx["lon"]
idx_lat = name2idx["lat"]
default_country = "US"
default_acct_type = "I"
count = 0
for row in reader:
if row[0].startswith("#"): # Comment line
continue
aid = row[idx_aid]
first_name = row[idx_first_name]
last_name = row[idx_last_name]
street_addr = row[idx_street_addr]
city = row[idx_city]
state = row[idx_state]
zip_code = row[idx_zip]
gender = row[idx_gender]
phone_number = row[idx_phone_number]
birth_date = row[idx_birth_date]
ssn = row[idx_ssn]
lon = row[idx_lon]
lat = row[idx_lat]
model = default_model
if start_day is not None and start_range is not None:
start = start_day + random.randrange(start_range)
else:
start = -1
if end_day is not None and end_range is not None:
end = end_day - random.randrange(end_range)
else:
end = -1
attr = {"first_name": first_name, "last_name": last_name, "street_addr": street_addr,
"city": city, "state": state, "zip": zip_code, "gender": gender,
"phone_number": phone_number, "birth_date": birth_date, "ssn": ssn, "lon": lon, "lat": lat}
init_balance = random.uniform(min_balance, max_balance) # Generate the initial balance
self.add_account(aid, init_balance=init_balance, country=default_country, business=default_acct_type, is_sar=False, **attr)
count += 1
def set_num_accounts(self):
with open(self.acct_file, "r") as rf:
reader = csv.reader(rf)
# Parse header
header = next(reader)
count = 0
for row in reader:
if row[0].startswith("#"):
continue
num = int(row[header.index('count')])
count += num
self.num_accounts = count
def load_account_list_param(self):
"""Load and add account vertices from a CSV file with aggregated parameters
Each row may represent two or more accounts
:param acct_file: Account parameter file path
"""
with open(self.acct_file, "r") as rf:
reader = csv.reader(rf)
# Parse header
header = next(reader)
acct_id = 0
for row in reader:
if row[0].startswith("#"):
continue
num = int(row[header.index('count')])
min_balance = parse_float(row[header.index('min_balance')])
max_balance = parse_float(row[header.index('max_balance')])
country = row[header.index('country')]
business = row[header.index('business_type')]
bank_id = row[header.index('bank_id')]
if bank_id is None:
bank_id = self.default_bank_id
for i in range(num):
init_balance = random.uniform(min_balance, max_balance) # Generate amount
self.add_account(acct_id, init_balance=init_balance, country=country, business=business, bank_id=bank_id, is_sar=False, normal_models=list())
acct_id += 1
logger.info("Generated %d accounts." % self.num_accounts)
def generate_normal_transactions(self):
"""Generate a base directed graph from degree sequences
TODO: Add options to call scale-free generator functions directly instead of loading degree CSV files
:return: Directed graph as the base transaction graph (not complete transaction graph)
"""
deg_file = os.path.join(self.input_dir, self.degree_file)
in_deg, out_deg = get_degrees(deg_file, self.num_accounts)
G = directed_configuration_model(in_deg, out_deg, self.seed)
G = nx.DiGraph(G)
self.g = G
logger.info("Add %d base transactions" % self.g.number_of_edges())
nodes = self.g.nodes()
for src_i, dst_i in self.g.edges():
src = nodes[src_i]
dst = nodes[dst_i]
self.add_edge_info(src, dst) # Add edge info.
def add_account(self, acct_id, **attr):
"""Add an account vertex
:param acct_id: Account ID
:param init_balance: Initial amount
:param start: The day when the account opened
:param end: The day when the account closed
:param country: Country name
:param business: Business type
:param bank_id: Bank ID
:param attr: Optional attributes-
:return:
"""
if attr['bank_id'] is None:
attr['bank_id'] = self.default_bank_id
self.g.node[acct_id] = attr
self.bank_to_accts[attr['bank_id']].add(acct_id)
self.acct_to_bank[acct_id] = attr['bank_id']
def remove_typology_candidate(self, acct):
"""Remove an account vertex from AML typology member candidates
:param acct: Account ID
"""
self.hubs.discard(acct)
bank_id = self.acct_to_bank[acct]
del self.acct_to_bank[acct]
self.bank_to_accts[bank_id].discard(acct)
def add_edge_info(self, orig, bene):
"""Adds info to edge. Based on add_transaction.
Add transaction will go away eventually.
:param orig: Originator account ID
:param bene: Beneficiary account ID
:return:
"""
self.check_account_exist(orig) # Ensure the originator and beneficiary accounts exist
self.check_account_exist(bene)
if orig == bene:
raise ValueError("Self loop from/to %s is not allowed for transaction networks" % str(orig))
self.g.edge[orig][bene]['edge_id'] = self.edge_id
self.edge_id += 1
# Load Custom Topology Files
def add_subgraph(self, members, topology):
"""Add subgraph from existing account vertices and given graph topology
:param members: Account vertex list
:param topology: Topology graph
:return:
"""
if len(members) != topology.number_of_nodes():
raise nx.NetworkXError("The number of account vertices does not match")
node_map = dict(zip(members, topology.nodes()))
for e in topology.edges():
src = node_map[e[0]]
dst = node_map[e[1]]
self.g.add_edge(src, dst)
self.add_edge_info(src, dst)
def load_edgelist(self, members, csv_name):
"""Load edgelist and add edges with existing account vertices
:param members: Account vertex list
:param csv_name: Edgelist file name
:return:
"""
topology = nx.DiGraph()
topology = nx.read_edgelist(csv_name, delimiter=",", create_using=topology)
self.add_subgraph(members, topology)
def mark_active_edges(self):
nx.set_edge_attributes(self.g, 'active', False)
for normal_model in self.normal_models:
subgraph = self.g.subgraph(normal_model.node_ids)
nx.set_edge_attributes(subgraph, 'active', True)
def load_normal_models(self):
"""Load a Normal Model parameter file
"""
normal_models_file = os.path.join(self.input_dir, self.normal_models_file)
with open(normal_models_file, "r") as csvfile:
reader = csv.reader(csvfile)
self.read_normal_models(reader)
def read_normal_models(self, reader):
"""Parse the Normal Model parameter file
"""
header = next(reader)
self.nominator = Nominator(self.g, self.degree_threshold)
for row in reader:
count = int(row[header.index('count')])
type = row[header.index('type')]
schedule_id = int(row[header.index('schedule_id')])
min_accounts = int(row[header.index('min_accounts')])
max_accounts = int(row[header.index('max_accounts')])
min_period = int(row[header.index('min_period')])
max_period = int(row[header.index('max_period')])
bank_id = row[header.index('bank_id')]
if bank_id is None:
bank_id = self.default_bank_id
self.nominator.initialize_count(type, count)
def build_normal_models(self):
while(self.nominator.has_more()):
for type in self.nominator.types():
count = self.nominator.count(type)
if count > 0:
self.choose_normal_model(type)
self.normal_model_id += 1
logger.info("Generated %d normal models." % len(self.normal_models))
logger.info("Normal model counts %s", self.nominator.used_count_dict)
def choose_normal_model(self, type):
if type == 'fan_in':
self.fan_in_model(type)
elif type == 'fan_out':
self.fan_out_model(type)
elif type == 'forward':
self.forward_model(type)
elif type == 'single':
self.single_model(type)
elif type == 'mutual':
self.mutual_model(type)
elif type == 'periodical':
self.periodical_model(type)
def fan_in_model(self, type):
node_id = self.nominator.next(type)
if node_id is None:
return
candidates = self.nominator.fan_in_breakdown(type, node_id)
if not candidates:
raise ValueError('should always be candidates')
normal_models = self.nominator.normal_models_in_type_relationship(type, node_id, {node_id})
for nm in normal_models:
nm.remove_node_ids(candidates)
result_ids = candidates | { node_id }
normal_model = NormalModel(self.normal_model_id, type, result_ids, node_id)
for result_id in result_ids:
self.g.node[result_id]['normal_models'].append(normal_model)
self.normal_models.append(normal_model)
self.nominator.post_fan_in(node_id, type)
def fan_out_model(self, type):
node_id = self.nominator.next(type)
if node_id is None:
return
candidates = self.nominator.fan_out_breakdown(type, node_id)
if not candidates:
raise ValueError('should always be candidates')
normal_models = self.nominator.normal_models_in_type_relationship(type, node_id, {node_id})
for nm in normal_models:
nm.remove_node_ids(candidates)
result_ids = candidates | { node_id }
normal_model = NormalModel(self.normal_model_id, type, result_ids, node_id)
for id in result_ids:
self.g.node[id]['normal_models'].append(normal_model)
self.normal_models.append(normal_model)
self.nominator.post_fan_out(node_id, type)
def forward_model(self, type):
node_id = self.nominator.next(type)
if node_id is None:
return
succ_ids = self.g.successors(node_id)
pred_ids = self.g.predecessors(node_id)
sets = [{node_id, pred_id, succ_id} for pred_id in pred_ids for succ_id in succ_ids]
set = next(
set for set in sets if not self.nominator.is_in_type_relationship(type, node_id, set)
)
normal_model = NormalModel(self.normal_model_id, type, list(set), node_id)
for id in set:
self.g.node[id]['normal_models'].append(normal_model)
self.normal_models.append(normal_model)
self.nominator.post_forward(node_id, type)
def single_model(self, type):
node_id = self.nominator.next(type)
if node_id is None:
return
succ_ids = self.g.successors(node_id)
succ_id = next(succ_id for succ_id in succ_ids if not self.nominator.is_in_type_relationship(type, node_id, {node_id, succ_id}))
result_ids = { node_id, succ_id }
normal_model = NormalModel(self.normal_model_id, type, result_ids, node_id)
for id in result_ids:
self.g.node[id]['normal_models'].append(normal_model)
self.normal_models.append(normal_model)
self.nominator.post_single(node_id, type)
def periodical_model(self, type):
node_id = self.nominator.next(type)
if node_id is None:
return
succ_ids = self.g.successors(node_id)
succ_id = next(succ_id for succ_id in succ_ids if not self.nominator.is_in_type_relationship(type, node_id, {node_id, succ_id}))
result_ids = { node_id, succ_id }
normal_model = NormalModel(self.normal_model_id, type, result_ids, node_id)
for id in result_ids:
self.g.node[id]['normal_models'].append(normal_model)
self.normal_models.append(normal_model)
self.nominator.post_periodical(node_id, type)
def mutual_model(self, type):
node_id = self.nominator.next(type)
if node_id is None:
return
succ_ids = self.g.successors(node_id)
succ_id = next(succ_id for succ_id in succ_ids if not self.nominator.is_in_type_relationship(type, node_id, {node_id, succ_id}))
result_ids = { node_id, succ_id }
normal_model = NormalModel(self.normal_model_id, type, result_ids, node_id)
for id in result_ids:
self.g.node[id]['normal_models'].append(normal_model)
self.normal_models.append(normal_model)
self.nominator.post_mutual(node_id, type)
def load_alert_patterns(self):
"""Load an AML typology parameter file
:return:
"""
alert_file = os.path.join(self.input_dir, self.alert_file)
idx_num = None
idx_type = None
idx_schedule = None
idx_min_accts = None
idx_max_accts = None
idx_min_amt = None
idx_max_amt = None
idx_min_period = None
idx_max_period = None
idx_bank = None
idx_sar = None
with open(alert_file, "r") as rf:
reader = csv.reader(rf)
# Parse header
header = next(reader)
for i, k in enumerate(header):
if k == "count": # Number of pattern subgraphs
idx_num = i
elif k == "type": # AML typology type (e.g. fan-out and cycle)
idx_type = i
elif k == "schedule_id": # Transaction scheduling type
idx_schedule = i
elif k == "min_accounts": # Minimum number of involved accounts
idx_min_accts = i
elif k == "max_accounts": # Maximum number of involved accounts
idx_max_accts = i
elif k == "min_amount": # Minimum initial transaction amount
idx_min_amt = i
elif k == "max_amount": # Maximum initial transaction amount
idx_max_amt = i
elif k == "min_period": # Minimum overall transaction period (number of simulation steps)
idx_min_period = i
elif k == "max_period": # Maximum overall transaction period (number of simulation steps)
idx_max_period = i
elif k == "bank_id": # Bank ID for internal-bank transactions
idx_bank = i
elif k == "is_sar": # SAR flag
idx_sar = i
else:
logger.warning("Unknown column name in %s: %s" % (alert_file, k))
# Generate transaction set
count = 0
for row in reader:
if len(row) == 0 or row[0].startswith("#"):
continue
num_patterns = int(row[idx_num]) # Number of alert patterns
typology_name = row[idx_type]
schedule = int(row[idx_schedule])
min_accts = int(row[idx_min_accts])
max_accts = int(row[idx_max_accts])
min_amount = parse_float(row[idx_min_amt])
max_amount = parse_float(row[idx_max_amt])
min_period = parse_int(row[idx_min_period])
max_period = parse_int(row[idx_max_period])
bank_id = row[idx_bank] if idx_bank is not None else "" # If empty, it has inter-bank transactions
is_sar = parse_flag(row[idx_sar])
if typology_name not in self.alert_types:
logger.warning("Pattern type name (%s) must be one of %s"
% (typology_name, str(self.alert_types.keys())))
continue
for i in range(num_patterns):
num_accts = random.randrange(min_accts, max_accts + 1)
period = random.randrange(min_period, max_period + 1)
self.add_aml_typology(is_sar, typology_name, num_accts, min_amount, max_amount, period, bank_id, schedule)
count += 1
if count % 1000 == 0:
logger.info("Created %d alerts" % count)
def add_aml_typology(self, is_sar, typology_name, num_accounts, min_amount, max_amount, period, bank_id="", schedule=1):
"""Add an AML typology transaction set
:param is_sar: Whether the alerted transaction set is SAR (True) or false-alert (False)
:param typology_name: Name of pattern type
("fan_in", "fan_out", "cycle", "random", "stack", "scatter_gather" or "gather_scatter")
:param num_accounts: Number of transaction members (accounts)
:param min_amount: Minimum amount of the transaction
:param max_amount: Maximum amount of the transaction
:param period: Period (number of days) for all transactions
:param bank_id: Bank ID which it chooses members from. If empty, it chooses members from all banks.
:param schedule: AML pattern transaction schedule model ID
"""
def add_node(_acct, _bank_id):
"""Set an attribute of bank ID to a member account
:param _acct: Account ID
:param _bank_id: Bank ID
"""
attr_dict = self.g.node[_acct]
attr_dict[IS_SAR_KEY] = True
sub_g.add_node(_acct, attr_dict)
def add_main_acct():
"""Create a main account ID and a bank ID from hub accounts
:return: main account ID and bank ID
"""
self.check_hub_exists()
_main_acct = random.sample(self.hubs, 1)[0]
_main_bank_id = self.acct_to_bank[_main_acct]
self.remove_typology_candidate(_main_acct)
add_node(_main_acct, _main_bank_id)
return _main_acct, _main_bank_id
def add_edge(_orig, _bene, _amount, _date):
"""Add transaction edge to the AML typology subgraph as well as the whole transaction graph
:param _orig: Originator account ID
:param _bene: Beneficiary account ID
:param _amount: Transaction amount
:param _date: Transaction timestamp
"""
sub_g.add_edge(_orig, _bene, amount=_amount, date=_date)
self.g.add_edge(_orig, _bene)
self.add_edge_info(_orig, _bene)
if bank_id == "" and len(self.bank_to_accts) >= 2:
is_external = True
elif bank_id != "" and bank_id not in self.bank_to_accts: # Invalid bank ID
raise KeyError("No such bank ID: %s" % bank_id)
else:
is_external = False
start_date = random.randrange(0, self.total_steps - period + 1)
end_date = start_date + period - 1 # end_date is inclusive
# Create subgraph structure with transaction attributes
model_id = self.alert_types[typology_name] # alert model ID
sub_g = nx.DiGraph(model_id=model_id, reason=typology_name, scheduleID=schedule,
start=start_date, end=end_date) # Transaction subgraph for a typology
if typology_name == "fan_in": # fan_in pattern (multiple accounts --> single (main) account)
main_acct, main_bank_id = add_main_acct()
num_neighbors = num_accounts - 1
amount = RoundedAmount(min_amount, max_amount).getAmount()
if is_external:
sub_bank_candidates = [b for b, nbs in self.bank_to_accts.items()
if b != main_bank_id and len(nbs) >= num_neighbors]
if not sub_bank_candidates:
logger.warning("No banks with appropriate number of neighboring accounts found.")
return
sub_bank_id = random.choice(sub_bank_candidates)
else:
sub_bank_id = main_bank_id
sub_accts = random.sample(self.bank_to_accts[sub_bank_id], num_neighbors)
for n in sub_accts:
self.remove_typology_candidate(n)
add_node(n, sub_bank_id)
for orig in sub_accts:
date = random.randrange(start_date, end_date + 1)
add_edge(orig, main_acct, amount, date)
elif typology_name == "fan_out": # fan_out pattern (single (main) account --> multiple accounts)
main_acct, main_bank_id = add_main_acct()
num_neighbors = num_accounts - 1
amount = RoundedAmount(min_amount, max_amount).getAmount()
if is_external:
sub_bank_candidates = [b for b, nbs in self.bank_to_accts.items()
if b != main_bank_id and len(nbs) >= num_neighbors]
if not sub_bank_candidates:
logger.warning("No banks with appropriate number of neighboring accounts found.")
return
sub_bank_id = random.choice(sub_bank_candidates)
else:
sub_bank_id = main_bank_id
sub_accts = random.sample(self.bank_to_accts[sub_bank_id], num_neighbors)
for n in sub_accts:
self.remove_typology_candidate(n)
add_node(n, sub_bank_id)
for bene in sub_accts:
date = random.randrange(start_date, end_date + 1)
add_edge(main_acct, bene, amount, date)
elif typology_name == "bipartite": # bipartite (originators -> many-to-many -> beneficiaries)
orig_bank_id = random.choice(self.get_all_bank_ids())
if is_external:
bene_bank_id = random.choice([b for b in self.get_all_bank_ids() if b != orig_bank_id])
else:
bene_bank_id = orig_bank_id
num_orig_accts = num_accounts // 2 # The former half members are originator accounts
num_bene_accts = num_accounts - num_orig_accts # The latter half members are beneficiary accounts
orig_accts = random.sample(self.bank_to_accts[orig_bank_id], num_orig_accts)
for n in orig_accts:
self.remove_typology_candidate(n)
add_node(n, orig_bank_id)
main_acct = orig_accts[0]
bene_accts = random.sample(self.bank_to_accts[bene_bank_id], num_bene_accts)
for n in bene_accts:
self.remove_typology_candidate(n)
add_node(n, bene_bank_id)
for orig, bene in itertools.product(orig_accts, bene_accts): # All-to-all transaction edges
amount = RandomAmount(min_amount, max_amount).getAmount()
date = random.randrange(start_date, end_date + 1)
add_edge(orig, bene, amount, date)
elif typology_name == "stack": # stacked bipartite layers
if is_external:
if len(self.get_all_bank_ids()) >= 3:
[orig_bank_id, mid_bank_id, bene_bank_id] = random.sample(self.get_all_bank_ids(), 3)
else:
[orig_bank_id, mid_bank_id] = random.sample(self.get_all_bank_ids(), 2)
bene_bank_id = orig_bank_id
else:
orig_bank_id = mid_bank_id = bene_bank_id = random.sample(self.get_all_bank_ids(), 1)[0]
# First and second 1/3 of members: originator and intermediate accounts
num_orig_accts = num_mid_accts = num_accounts // 3
# Last 1/3 of members: beneficiary accounts
num_bene_accts = num_accounts - num_orig_accts * 2
orig_accts = random.sample(self.bank_to_accts[orig_bank_id], num_orig_accts)
for n in orig_accts:
self.remove_typology_candidate(n)
add_node(n, orig_bank_id)
main_acct = orig_accts[0]
mid_accts = random.sample(self.bank_to_accts[mid_bank_id], num_mid_accts)
for n in mid_accts:
self.remove_typology_candidate(n)
add_node(n, mid_bank_id)
bene_accts = random.sample(self.bank_to_accts[bene_bank_id], num_bene_accts)
for n in bene_accts:
self.remove_typology_candidate(n)
add_node(n, bene_bank_id)
for orig, bene in itertools.product(orig_accts, mid_accts): # all-to-all transactions
amount = RandomAmount(min_amount, max_amount).getAmount()
date = random.randrange(start_date, end_date + 1)
add_edge(orig, bene, amount, date)
for orig, bene in itertools.product(mid_accts, bene_accts): # all-to-all transactions
amount = RandomAmount(min_amount, max_amount).getAmount()
date = random.randrange(start_date, end_date + 1)
add_edge(orig, bene, amount, date)
elif typology_name == "random": # Random transactions among members
amount = RandomAmount(min_amount, max_amount).getAmount()
date = random.randrange(start_date, end_date + 1)
if is_external:
all_bank_ids = self.get_all_bank_ids()
bank_id_iter = itertools.cycle(all_bank_ids)
prev_acct = None
main_acct = None
for _ in range(num_accounts):
bank_id = next(bank_id_iter)
next_acct = random.sample(self.bank_to_accts[bank_id], 1)[0]
if prev_acct is None:
main_acct = next_acct
else:
add_edge(prev_acct, next_acct, amount, date)
self.remove_typology_candidate(next_acct)
add_node(next_acct, bank_id)
prev_acct = next_acct
else:
main_acct, main_bank_id = add_main_acct()
sub_accts = random.sample(self.bank_to_accts[main_bank_id], num_accounts - 1)
for n in sub_accts:
self.remove_typology_candidate(n)
add_node(n, main_bank_id)
prev_acct = main_acct
for _ in range(num_accounts - 1):
next_acct = random.choice([n for n in sub_accts if n != prev_acct])
add_edge(prev_acct, next_acct, amount, date)
prev_acct = next_acct
elif typology_name == "cycle": # Cycle transactions
amount = RandomAmount(min_amount, max_amount).getAmount()
dates = sorted([random.randrange(start_date, end_date + 1) for _ in range(num_accounts)])
if is_external:
all_accts = list()
all_bank_ids = self.get_all_bank_ids()
remain_num = num_accounts
while all_bank_ids:
num_accts_per_bank = remain_num // len(all_bank_ids)
bank_id = all_bank_ids.pop()
new_members = random.sample(self.bank_to_accts[bank_id], num_accts_per_bank)
all_accts.extend(new_members)
remain_num -= len(new_members)
for n in new_members:
self.remove_typology_candidate(n)
add_node(n, bank_id)
main_acct = all_accts[0]
else:
main_acct, main_bank_id = add_main_acct()
sub_accts = random.sample(self.bank_to_accts[main_bank_id], num_accounts - 1)
for n in sub_accts:
self.remove_typology_candidate(n)
add_node(n, main_bank_id)
all_accts = [main_acct] + sub_accts
for i in range(num_accounts):
orig_i = i
bene_i = (i + 1) % num_accounts
orig_acct = all_accts[orig_i]
bene_acct = all_accts[bene_i]
date = dates[i]
add_edge(orig_acct, bene_acct, amount, date)
margin = amount * self.margin_ratio # Margin the beneficiary account can gain
amount = amount - margin # max(amount - margin, min_amount)
elif typology_name == "scatter_gather": # Scatter-Gather (fan-out -> fan-in)
if is_external:
if len(self.get_all_bank_ids()) >= 3:
[orig_bank_id, mid_bank_id, bene_bank_id] = random.sample(self.get_all_bank_ids(), 3)
else:
[orig_bank_id, mid_bank_id] = random.sample(self.get_all_bank_ids(), 2)
bene_bank_id = orig_bank_id
else:
orig_bank_id = mid_bank_id = bene_bank_id = random.sample(self.get_all_bank_ids(), 1)[0]
main_acct = orig_acct = random.sample(self.bank_to_accts[orig_bank_id], 1)[0]
self.remove_typology_candidate(orig_acct)
add_node(orig_acct, orig_bank_id)
mid_accts = random.sample(self.bank_to_accts[mid_bank_id], num_accounts - 2)
for n in mid_accts:
self.remove_typology_candidate(n)
add_node(n, mid_bank_id)
bene_acct = random.sample(self.bank_to_accts[bene_bank_id], 1)[0]
self.remove_typology_candidate(bene_acct)
add_node(bene_acct, bene_bank_id)
# The date of all scatter transactions must be performed before middle day
mid_date = (start_date + end_date) // 2
for i in range(len(mid_accts)):
mid_acct = mid_accts[i]
scatter_amount = RandomAmount(min_amount, max_amount).getAmount()
margin = scatter_amount * self.margin_ratio # Margin of the intermediate account
amount = scatter_amount - margin
scatter_date = random.randrange(start_date, mid_date)
gather_date = random.randrange(mid_date, end_date + 1)
add_edge(orig_acct, mid_acct, scatter_amount, scatter_date)
add_edge(mid_acct, bene_acct, amount, gather_date)
elif typology_name == "gather_scatter": # Gather-Scatter (fan-in -> fan-out)
if is_external:
if len(self.get_all_bank_ids()) >= 3:
[orig_bank_id, mid_bank_id, bene_bank_id] = random.sample(self.get_all_bank_ids(), 3)
else:
[orig_bank_id, mid_bank_id] = random.sample(self.get_all_bank_ids(), 2)
bene_bank_id = orig_bank_id
else:
orig_bank_id = mid_bank_id = bene_bank_id = random.sample(self.get_all_bank_ids(), 1)[0]
num_orig_accts = num_bene_accts = (num_accounts - 1) // 2
orig_accts = random.sample(self.bank_to_accts[orig_bank_id], num_orig_accts)
for n in orig_accts:
self.remove_typology_candidate(n)
add_node(n, orig_bank_id)
main_acct = mid_acct = random.sample(self.bank_to_accts[mid_bank_id], 1)[0]
self.remove_typology_candidate(mid_acct)
add_node(mid_acct, mid_bank_id)
bene_accts = random.sample(self.bank_to_accts[bene_bank_id], num_bene_accts)
for n in bene_accts:
self.remove_typology_candidate(n)
add_node(n, bene_bank_id)
accumulated_amount = 0.0
mid_date = (start_date + end_date) // 2
amount = RandomAmount(min_amount, max_amount).getAmount()
for i in range(num_orig_accts):
orig_acct = orig_accts[i]
date = random.randrange(start_date, mid_date)
add_edge(orig_acct, mid_acct, amount, date)
accumulated_amount += amount
# print(orig_acct, "->", date, "->", mid_acct)
for i in range(num_bene_accts):
bene_acct = bene_accts[i]
date = random.randrange(mid_date, end_date + 1)
add_edge(mid_acct, bene_acct, amount, date)
# print(mid_acct, "->", date, "->", bene_acct)
# print(orig_accts, mid_acct, bene_accts)
# TODO: Please add user-defined typology implementations here
else:
logger.warning("Unknown AML typology name: %s" % typology_name)
return
# Add the generated transaction edges to whole transaction graph
sub_g.graph[MAIN_ACCT_KEY] = main_acct # Main account ID
sub_g.graph[IS_SAR_KEY] = is_sar # SAR flag
self.alert_groups[self.alert_id] = sub_g
self.alert_id += 1
def write_account_list(self):
os.makedirs(self.output_dir, exist_ok=True)
acct_file = os.path.join(self.output_dir, self.out_account_file)
with open(acct_file, "w") as wf:
writer = csv.writer(wf)
base_attrs = ["ACCOUNT_ID", "CUSTOMER_ID", "INIT_BALANCE", "COUNTRY",
"ACCOUNT_TYPE", "IS_SAR", "BANK_ID"]
writer.writerow(base_attrs + self.attr_names)
for n in self.g.nodes(data=True):
aid = n[0] # Account ID
cid = "C_" + str(aid) # Customer ID bounded to this account
prop = n[1] # Account attributes
balance = "{0:.2f}".format(prop["init_balance"]) # Initial balance
country = prop["country"] # Country
business = prop["business"] # Business type
is_sar = "true" if prop[IS_SAR_KEY] else "false" # Whether this account is involved in SAR
bank_id = prop["bank_id"] # Bank ID
values = [aid, cid, balance, country, business, is_sar, bank_id]
for attr_name in self.attr_names:
values.append(prop[attr_name])
writer.writerow(values)
logger.info("Exported %d accounts to %s" % (self.g.number_of_nodes(), acct_file))
def write_transaction_list(self):
tx_file = os.path.join(self.output_dir, self.out_tx_file)
with open(tx_file, "w") as wf:
writer = csv.writer(wf)
writer.writerow(["id", "src", "dst", "ttype"])
for e in self.g.edges(data=True):
src = e[0]
dst = e[1]
attr = e[2]
tid = attr['edge_id']
tx_type = random.choice(self.tx_types)
if attr['active']:
writer.writerow([tid, src, dst, tx_type])
logger.info("Exported %d transactions to %s" % (self.g.number_of_edges(), tx_file))
def write_alert_account_list(self):
def get_out_edge_attrs(g, vid, name):
return [v for k, v in nx.get_edge_attributes(g, name).items() if (k[0] == vid or k[1] == vid)]
acct_count = 0
alert_member_file = os.path.join(self.output_dir, self.out_alert_member_file)
logger.info("Output alert member list to: " + alert_member_file)
with open(alert_member_file, "w") as wf:
writer = csv.writer(wf)
base_attrs = ["alertID", "reason", "accountID", "isMain", "isSAR", "modelID",
"minAmount", "maxAmount", "startStep", "endStep", "scheduleID", "bankID"]
writer.writerow(base_attrs + self.attr_names)
for gid, sub_g in self.alert_groups.items():
main_id = sub_g.graph[MAIN_ACCT_KEY]
model_id = sub_g.graph["model_id"]
schedule_id = sub_g.graph["scheduleID"]
reason = sub_g.graph["reason"]
start = sub_g.graph["start"]
end = sub_g.graph["end"]
for n in sub_g.nodes():
is_main = "true" if n == main_id else "false"
is_sar = "true" if sub_g.graph[IS_SAR_KEY] else "false"
min_amt = '{:.2f}'.format(min(get_out_edge_attrs(sub_g, n, "amount")))
max_amt = '{:.2f}'.format(max(get_out_edge_attrs(sub_g, n, "amount")))
min_step = start
max_step = end
bank_id = sub_g.node[n]["bank_id"]
values = [gid, reason, n, is_main, is_sar, model_id, min_amt, max_amt,
min_step, max_step, schedule_id, bank_id]
prop = self.g.node[n]
for attr_name in self.attr_names:
values.append(prop[attr_name])
writer.writerow(values)
acct_count += 1
logger.info("Exported %d members for %d AML typologies to %s" %
(acct_count, len(self.alert_groups), alert_member_file))
def write_normal_models(self):
output_file = os.path.join(self.output_dir, self.out_normal_models_file)
with open(output_file, "w") as wf:
writer = csv.writer(wf)
column_headers = ["modelID", "type", "accountID", "isMain", "isSAR", "scheduleID"]
writer.writerow(column_headers)
for normal_model in self.normal_models:
for account_id in normal_model.node_ids:
values = [normal_model.id, normal_model.type, account_id, normal_model.is_main(account_id), False, 2]
writer.writerow(values)
def count__patterns(self, threshold=2):
"""Count the number of fan-in and fan-out patterns in the generated transaction graph
"""
in_deg = Counter(self.g.in_degree().values()) # in-degree, count
out_deg = Counter(self.g.out_degree().values()) # out-degree, count
for th in range(2, threshold + 1):
num_fan_in = sum([c for d, c in in_deg.items() if d >= th])
num_fan_out = sum([c for d, c in out_deg.items() if d >= th])
logger.info("\tNumber of fan-in / fan-out patterns with %d neighbors: %d / %d"
% (th, num_fan_in, num_fan_out))
main_in_deg = Counter()
main_out_deg = Counter()
for sub_g in self.alert_groups.values():
main_acct = sub_g.graph[MAIN_ACCT_KEY]
main_in_deg[self.g.in_degree(main_acct)] += 1
main_out_deg[self.g.out_degree(main_acct)] += 1
for th in range(2, threshold + 1):
num_fan_in = sum([c for d, c in main_in_deg.items() if d >= threshold])
num_fan_out = sum([c for d, c in main_out_deg.items() if d >= threshold])
logger.info("\tNumber of alerted fan-in / fan-out patterns with %d neighbors: %d / %d"
% (th, num_fan_in, num_fan_out))
if __name__ == "__main__":
argv = sys.argv
argc = len(argv)
if argc < 2:
print("Usage: python3 %s [ConfJSON]" % argv[0])
exit(1)
_conf_file = argv[1]
_sim_name = argv[2] if argc >= 3 else None
# Validation option for graph contractions
deg_param = os.getenv("DEGREE")
degree_threshold = 0 if deg_param is None else int(deg_param)
with open(_conf_file, "r") as rf:
conf = json.load(rf)
txg = TransactionGenerator(conf, _sim_name)
txg.set_num_accounts()
txg.generate_normal_transactions() # Load a parameter CSV file for the base transaction types
txg.load_account_list() # Load account list CSV file
if degree_threshold > 0:
logger.info("Generated normal transaction network")
txg.count_fan_in_out_patterns(degree_threshold)
txg.load_normal_models() # Load a parameter CSV file for Normal Models
#cProfile.run('txg.build_normal_models()')
txg.build_normal_models()
txg.set_main_acct_candidates()
txg.load_alert_patterns() # Load a parameter CSV file for AML typology subgraphs
txg.mark_active_edges()
if degree_threshold > 0:
logger.info("Added alert transaction patterns")
txg.count_fan_in_out_patterns(degree_threshold)
txg.write_account_list() # Export accounts to a CSV file
txg.write_transaction_list() # Export transactions to a CSV file
txg.write_alert_account_list() # Export alert accounts to a CSV file
txg.write_normal_models()
|