File size: 27,185 Bytes
2795186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
from configparser import ConfigParser
import networkx as nx
import numpy as np
import itertools
import random
import csv
import os
import sys


#### Utility functions parsing values
def parse_int(value):
  try:
    return int(value)
  except ValueError:
    return None


def parse_amount(value):
  try:
    return float(value)
  except ValueError:
    return None


def parse_flag(value):
  return value.lower() == "true"



class TransactionGenerator:

  def __init__(self, confFile):
    """Initialize transaction network.
    
    :param confFile: Configuration (ini) file name
    """
    self.g = nx.MultiDiGraph()
    self.num_accounts = 0
    self.degrees = dict()
    self.hubs = list()
    
    self.conf = ConfigParser()
    self.conf.read(confFile)
    self.seed = int(self.conf.get("General", "seed"))
    np.random.seed(self.seed)
    random.seed(self.seed)

    self.factor = int(self.conf.get("Base", "edge_factor"))
    self.prob = float(self.conf.get("Base", "triangle_prob"))
    
    self.default_max_amount = parse_amount(self.conf.get("General", "default_max_amount"))
    self.default_min_amount = parse_amount(self.conf.get("General", "default_min_amount"))
    self.total_period = parse_int(self.conf.get("General", "total_period"))
    self.alert_ratio = parse_int(self.conf.get("General", "alert_ratio"))
    
    self.input_dir = self.conf.get("InputFile", "directory")
    self.output_dir = self.conf.get("OutputFile", "directory")
    
    highrisk_countries_str = self.conf.get("HighRisk", "countries")
    highrisk_business_str = self.conf.get("HighRisk", "business")
    self.highrisk_countries = set(highrisk_countries_str.split(","))
    self.highrisk_business = set(highrisk_business_str.split(","))
    
    self.tx_id = 0  # Transaction ID
    self.fraud_id = 0  # Fraud ID from AML rules
    self.fraudgroups = dict()  # Fraud ID and fraud transaction graph
    self.types = {"fan_in":1, "fan_out":2, "bipartite":3, "mixed":4, "stack":5, "dense":6}  ## Pattern name and model ID

  def generate_degrees(self):
    self.degrees = self.g.degree(self.g.nodes())
    self.hubs = [n for n in self.g.nodes() if self.factor <= self.degrees[n] <= self.factor * 2]

  #### Highrisk country and business
  def is_highrisk_country(self, country):
    return country in self.highrisk_countries
  
  def is_highrisk_business(self, business):
    return business in self.highrisk_business
  
  
  #### Account existence check
  def check_account_exist(self, aid):
    if not self.g.has_node(aid):
      raise KeyError("Account %s does not exist" % str(aid))
  
  def check_account_absent(self, aid):
    if self.g.has_node(aid):
      print("Warning: account %s already exists" % str(aid))
      return False
    else:
      return True
  
  
  #### Pickup account vertices
  def get_account_vertex(self, suspicious=None):
    """Get an account vertex
    
    :param suspicious: If True, extract one only from suspicious accounts.
    If False, extract one only from non-suspicious accounts. If None (default), extract one from all accounts.
    :return: An account ID
    """
    if suspicious is None:
      candidates = self.g.nodes()
    else:
      candidates = [n for n in self.g.nodes() if self.g.node[n]["suspicious"] == suspicious]  # True/False
    return random.choice(candidates)


  def get_hub_vertices(self, num):
    """Get account vertices randomly (high-degree vertices are likely selected)

    :param num: Number of total account vertices
    :return: Account ID list
    """
    # if suspicious is None:
    #   candidates = self.g.nodes()
    # else:
    #   candidates = [n for n in self.g.nodes() if self.g.nodes[n]["suspicious"] == suspicious]  # True/False
    # candidates = [n for n in candidates if self.factor <= self.degrees[n]]
    # degrees = [self.degrees[n] for n in candidates]
    # probs = np.array(degrees) / float(sum(degrees))

    candidates = set()
    while len(candidates) < num:
      hub = random.choice(self.hubs)
      candidates.update([hub]+self.g.adj[hub].keys()) # candidates.update(nx.ego_graph(self.g, hub).nodes())
    return np.random.choice(list(candidates), num, False)



  def get_account_vertices(self, num, suspicious=None):
    """Get account vertices randomly
    
    :param num: Number of total account vertices
    :param suspicious: If True, extract only suspicious accounts. If False, extract only non-suspicious accounts.
    If None (default), extract them from all accounts.
    :return: Account ID list
    """
    if suspicious is None:
      candidates = self.g.nodes()
    else:
      candidates = [n for n in self.g.nodes() if self.g.node[n]["suspicious"] == suspicious]  # True/False
    return random.sample(candidates, num)
    

  #### Load account vertices from CSV file
  def load_account_list(self):
    fname = os.path.join(self.input_dir, self.conf.get("InputFile", "account_list"))

    idx_num = None
    idx_min = None
    idx_max = None
    idx_start = None
    idx_end = None
    idx_country = None
    idx_business = None
    idx_suspicious = None
    idx_model = None
    
    with open(fname, "r") as rf:
      reader = csv.reader(rf)

      ## Parse header
      header = next(reader)
      for i, k in enumerate(header):
        if k == "num":
          idx_num = i
        elif k == "min_balance":
          idx_min = i
        elif k == "max_balance":
          idx_max = i
        elif k == "start_day":
          idx_start = i
        elif k == "end_day":
          idx_end = i
        elif k == "country":
          idx_country = i
        elif k == "business_type":
          idx_business = i
        elif k == "suspicious":
          idx_suspicious = i
        elif k == "model":
          idx_model = i
        else:
          print("Warning: unknown key: %s" % k)
      
      aid = 0
      for row in reader:
        num = int(row[idx_num])
        min_balance = parse_amount(row[idx_min])
        max_balance = parse_amount(row[idx_max])
        start_day = parse_int(row[idx_start])
        end_day = parse_int(row[idx_end])
        country = row[idx_country]
        business = row[idx_business]
        suspicious = parse_flag(row[idx_suspicious])
        modelID = parse_int(row[idx_model])
        
        for i in range(num):
          init_balance = random.uniform(min_balance, max_balance)
          self.add_account(aid, init_balance, start_day, end_day, country, business, suspicious, modelID)
          aid += 1

    self.num_accounts = aid
    print("Created %d accounts." % self.num_accounts)


  #### Generate base transactions without attributes
  # https://networkx.github.io/documentation/stable/reference/generated/networkx.generators.random_graphs.powerlaw_cluster_graph.html
  def add_base_transactions(self):
    factor = self.factor  # the number of random edges to add for each new node
    prob = self.prob  # probability of adding a triangle after adding a random edge
    seed = self.seed    # seed for random number generator
    g = nx.generators.random_graphs.powerlaw_cluster_graph(self.num_accounts, factor, prob, seed)
    for src, dst in g.edges():
      self.add_transaction(src, dst)
    print("Added %d base transactions." % g.number_of_edges())
  
  
  #### Add an account vertex and a transaction edge
  def add_account(self, aid, init_balance, start, end, country, business, suspicious, modelID):
    """Add an account
    :param aid: Account ID
    :param init_balance: Initial amount
    :param start: The day when the account opened
    :param end: The day when the account closed
    :param country: Country
    :param business: business type
    :param suspicious: Whether the account is suspicious
    :param modelID: Remittance model ID
    :return:
    """
    if self.check_account_absent(aid):
      self.g.add_node(aid, init_balance=init_balance, start=start, end=end, country=country, business=business, suspicious=suspicious, isFraud=False, modelID=modelID)


  def add_transaction(self, src, dst, amount=None, date=None):
    """Add a transaction
    :param src:
    :param dst:
    :param amount:
    :param date:
    :return:
    """
    self.check_account_exist(src)
    self.check_account_exist(dst)
    self.g.add_edge(src, dst, key=self.tx_id, amount=amount, date=date)
    self.tx_id += 1



  #### Load Simple Transaction Patterns
  def load_simple_patterns(self):
    """Load simple transaction pattern file
    
    :return:
    """
    types = ["cycle", "fan_in", "fan_out", "path", "dense"]
    
    csv_name = os.path.join(self.input_dir, self.conf.get("InputFile", "patterns"))
    
    idx_num = None
    idx_type = None
    idx_accts = None
    idx_min = None
    idx_max = None
    idx_start = None
    idx_end = None
    
    with open(csv_name, "r") as rf:
      reader = csv.reader(rf)

      ## Parse header
      header = next(reader)
      for i, k in enumerate(header):
        if k == "num":
          idx_num = i
        elif k == "type":
          idx_type = i
        elif k == "accounts":
          idx_accts = i
        elif k == "min_amount":
          idx_min = i
        elif k == "max_amount":
          idx_max = i
        elif k == "start_day":
          idx_start = i
        elif k == "end_day":
          idx_end = i
        else:
          print("Warning: unknown key: %s" % k)
      
      for row in reader:
        if "#" in row[0]:  ## Comment
          continue

        num = int(row[idx_num])
        pattern_type = row[idx_type]
        accounts = int(row[idx_accts])
        min_amount = parse_amount(row[idx_min])
        max_amount = parse_amount(row[idx_max])
        start_day = parse_int(row[idx_start])
        end_day = parse_int(row[idx_end])
        
        if pattern_type not in types:
          print("Warning: pattern type (%s) must be one of %s" % (pattern_type, str(types)))
          continue
        
        if accounts < 3:
          print("Warning: number of members (%d) must be 3 or more" % accounts)
          continue
        
        for i in range(num):
          amount = random.uniform(min_amount, max_amount)
          day = random.randrange(start_day, end_day)
          members = self.get_account_vertices(accounts)
          
          if pattern_type == "cycle":
            self.add_cycle_pattern(members, amount, day)
          elif pattern_type == "fan_in":
            self.add_fan_in_pattern(members[1:], members[0], amount, day)
          elif pattern_type == "fan_out":
            self.add_fan_out_pattern(members[0], members[1:], amount, day)
          elif pattern_type == "path":
            self.add_path_pattern(members, amount, day)
          else:
            print("Warning: unknown pattern type: %s" % pattern_type)
            break
    
  

  #### Add Simple Transaction Patterns
  
  def add_cycle_pattern(self, members, amount, date):
    """Add cycle transactions
    :param members: Transaction members
    :param amount:
    :param date:
    :return:
    """
    num = len(members)
    for i in range(num):
      src = members[i]
      dst = members[(i+1) % num]
      self.add_transaction(src, dst, amount, date)

  def add_fan_in_pattern(self, src_list, dst, amount, date):
    for src in src_list:
      self.add_transaction(src, dst, amount, date)

  def add_fan_out_pattern(self, src, dst_list, amount, date):
    for dst in dst_list:
      self.add_transaction(src, dst, amount, date)
  
  def add_path_pattern(self, members, amount, date):
    for i in range(len(members)-1):
      self.add_transaction(members[i], members[i+1], amount, date)

  
  
  #### Add Dense (multiple fan-in/out) Transaction Patterns
  
  def add_dense_transactions(self, src_list, dst_list, limit=None):
    pairs = list(itertools.product(src_list, dst_list))
    if limit is not None:
      limit = min(len(pairs), limit)
      random.shuffle(pairs)
      pairs = pairs[:limit]
    
    for src, dst in pairs:
      self.add_transaction(src, dst)
  
  
  
  #### Load Custom Topology Files
  
  def add_subgraph(self, members, topology):
    """Add subgraph from exisiting account vertices and given graph topology
    
    :param members: Account vertex list
    :param topology: Topology graph
    :return:
    """
    if len(members) != topology.number_of_nodes():
      raise nx.NetworkXError("The number of account vertices does not match")
    
    nodemap = dict(zip(members, topology.nodes()))
    for e in topology.edges():
      src = nodemap[e[0]]
      dst = nodemap[e[1]]
      self.add_transaction(src, dst)
    
  
  def load_edgelist(self, members, csv_name):
    """Load edgelist and add edges with existing account vertices
    
    :param members: Account vertex list
    :param csv_name: Edgelist file name
    :return:
    """
    topology = nx.MultiDiGraph()
    topology = nx.read_edgelist(csv_name, delimiter=",", create_using=topology)
    self.add_subgraph(members, topology)


  
  #### Add transaction set of fraud groups based on AML rule
  
  def load_aml_rule(self):
    """Load AML CSV file
    
    :return:
    """
    
    csv_name = os.path.join(self.input_dir, self.conf.get("InputFile", "amlrule"))
    
    idx_num = None
    idx_type = None
    idx_accts = None
    idx_individual = None
    idx_aggregated = None
    idx_count = None
    idx_difference = None
    idx_period = None
    idx_rounded = None
    idx_orig_country = None
    idx_bene_country = None
    idx_orig_business = None
    idx_bene_business = None
    
    with open(csv_name, "r") as rf:
      reader = csv.reader(rf)
      
      ## Parse header
      header = next(reader)
      for i, k in enumerate(header):
        if k == "num":
          idx_num = i
        elif k == "type":
          idx_type = i
        elif k == "accounts":
          idx_accts = i
        elif k == "individual_amount":
          idx_individual = i
        elif k == "aggregated_amount":
          idx_aggregated = i
        elif k == "transaction_count":
          idx_count = i
        elif k == "amount_difference":
          idx_difference = i
        elif k == "period":
          idx_period = i
        elif k == "amount_rounded":
          idx_rounded = i
        elif k == "orig_country":
          idx_orig_country = i
        elif k == "bene_country":
          idx_bene_country = i
        elif k == "orig_business":
          idx_orig_business = i
        elif k == "bene_business":
          idx_bene_business = i
        else:
          print("Warning: unknown key: %s" % k)
      
      ## Generate transaction set
      for row in reader:
        if "#" in row[0]:  ## Comment
          continue

        num = int(row[idx_num])
        pattern_type = row[idx_type]
        accounts = int(row[idx_accts])
        individual_amount = parse_amount(row[idx_individual])
        aggregated_amount = parse_amount(row[idx_aggregated])
        transaction_count = parse_int(row[idx_count])
        amount_difference = parse_amount(row[idx_difference])
        period = parse_int(row[idx_period])
        amount_rounded = parse_amount(row[idx_rounded])
        orig_country = parse_flag(row[idx_orig_country])
        bene_country = parse_flag(row[idx_bene_country])
        orig_business = parse_flag(row[idx_orig_business])
        bene_business = parse_flag(row[idx_bene_business])
        
        if not pattern_type in self.types:
          print("Warning: pattern type (%s) must be one of %s" % (pattern_type, str(self.types.keys())))
          continue
        
        if transaction_count is not None and transaction_count < accounts:
          print("Warning: number of transactions (%d) must not be smaller than the number of accounts (%d)" % (transaction_count, accounts))
          continue
        
        # members = self.get_account_vertices(accounts)
        
        for i in range(num):
          ## Add fraud patterns
          self.add_aml_rule(True, pattern_type, accounts, individual_amount, aggregated_amount, transaction_count,
                            amount_difference, period, amount_rounded, orig_country, bene_country, orig_business, bene_business)
          for j in range(self.alert_ratio):
            ## Add alert patterns
            self.add_aml_rule(False, pattern_type, accounts, individual_amount, aggregated_amount, transaction_count,
                              amount_difference, period, amount_rounded, orig_country, bene_country, orig_business, bene_business)
      
  
  
  def add_aml_rule(self, isFraud, pattern_type, accounts, individual_amount=None, aggregated_amount=None,
                   transaction_freq=None, amount_difference=None, period=None, amount_rounded=None,
                   orig_country=False, bene_country=False, orig_business=False, bene_business=False):
    """Add an AML rule transaction set

    :param isFraud: Whether the trasnsaction set is fraud or alert
    :param pattern_type: Pattern type ("fan_in", "fan_out", "dense", "mixed" or "stack")
    :param accounts: Number of transaction members (accounts)
    :param individual_amount: Minimum individual amount
    :param aggregated_amount: Minimum aggregated amount
    :param transaction_freq: Minimum transaction frequency
    :param amount_difference: Proportion of maximum transaction difference
    :param period: Lookback period (days)
    :param amount_rounded: Proportion of rounded amounts
    :param orig_country: Whether the originator country is suspicious
    :param bene_country: Whether the beneficiary country is suspicious
    :param orig_business: Whether the originator business type is suspicious
    :param bene_business: Whether the beneficiary business type is suspicious
    :return:
    """
    # members = self.get_account_vertices(accounts)
    members = self.get_hub_vertices(accounts)

    ## Prepare parameters
    if individual_amount is None:
      min_amount = self.default_min_amount
      max_amount = self.default_max_amount
    else:
      min_amount = individual_amount
      max_amount = individual_amount * 2
    
    if aggregated_amount is None:
      aggregated_amount = 0

    start_day = random.randint(0, self.total_period)
    if period is None:
      end_day = start_day + self.total_period
    else:
      end_day = start_day + period


    ## Create subgraph structure with transaction attributes
    modelID = self.types[pattern_type]  ## Fraud model ID
    sub_g = nx.MultiDiGraph(modelID=modelID)
    num_members = len(members)
    total_amount = 0
    transaction_count = 0
    subject = None  # Subject account ID
    
    if pattern_type == "fan_in":  # fan_in
      src_list = members[1:]
      dst = members[0]
      subject = dst
      
      if transaction_freq is None:
        transaction_freq = num_members - 1
        
      for src in itertools.cycle(src_list):
        amount = random.uniform(min_amount, max_amount)
        date = random.randrange(start_day, end_day)
        sub_g.add_edge(src, dst, amount=amount, date=date)
        
        transaction_count += 1
        total_amount += amount
        if transaction_count >= transaction_freq and total_amount >= aggregated_amount:
          break
      
      
    elif pattern_type == "fan_out":  # fan_out
      src = members[0]
      dst_list = members[1:]
      subject = src
      
      if transaction_freq is None:
        transaction_freq = num_members - 1
      
      for dst in itertools.cycle(dst_list):
        amount = random.uniform(min_amount, max_amount)
        date = random.randrange(start_day, end_day)
        sub_g.add_edge(src, dst, amount=amount, date=date)
        
        transaction_count += 1
        total_amount += amount
        if transaction_count >= transaction_freq and total_amount >= aggregated_amount:
          break
      
      
    elif pattern_type == "bipartite":  # dense bipartite
      src_list = members[:(num_members/2)]
      dst_list = members[(num_members/2):]
      
      if transaction_freq is None:
        transaction_freq = len(src_list) * len(dst_list)
      
      for src, dst in itertools.product(src_list, dst_list):
        amount = random.uniform(min_amount, max_amount)
        date = random.randrange(start_day, end_day)
        sub_g.add_edge(src, dst, amount=amount, date=date)
        
        transaction_count += 1
        total_amount += amount
        if transaction_count > transaction_freq and total_amount >= aggregated_amount:
          break

      subject = max(sub_g.nodes(), key=lambda n:sub_g.degree(n))  # hub vertex
      
      
    elif pattern_type == "mixed":  # fan_out, dense bipartite, fan_in
      src = members[0]
      dst = members[num_members-1]
      src_list = members[1:(num_members/2)]
      dst_list = members[(num_members/2):num_members-1]
      
      if transaction_freq is None:
        transaction_freq = len(src_list) + len(dst_list) + len(src_list) * len(dst_list)
        
      for _dst in src_list:
        amount = random.uniform(min_amount, max_amount)
        date = random.randrange(start_day, end_day)
        sub_g.add_edge(src, _dst, amount=amount, date=date)
        transaction_count += 1
        total_amount += amount
      
      for _src, _dst in itertools.product(src_list, dst_list):
        amount = random.uniform(min_amount, max_amount)
        date = random.randrange(start_day, end_day)
        sub_g.add_edge(_src, _dst, amount=amount, date=date)
        transaction_count += 1
        total_amount += amount
      
      for _src in itertools.cycle(dst_list):
        amount = random.uniform(min_amount, max_amount)
        date = random.randrange(start_day, end_day)
        sub_g.add_edge(_src, dst, amount=amount, date=date)
        transaction_count += 1
        total_amount += amount
        if transaction_count >= transaction_freq and total_amount >= aggregated_amount:
          break

      subject = max(sub_g.nodes(), key=lambda n:sub_g.degree(n))  # hub vertex
      
      
      
    elif pattern_type == "stack":  # two dense bipartite layers
      src_list = members[:num_members/3]
      mid_list = members[num_members/3:num_members*2/3]
      dst_list = members[num_members*2/3:]
      
      if transaction_freq is None:
        transaction_freq = len(src_list) * len(mid_list) + len(mid_list) * len(dst_list)

      for src, dst in itertools.product(src_list, mid_list):
        amount = random.uniform(min_amount, max_amount)
        date = random.randrange(start_day, end_day)
        sub_g.add_edge(src, dst, amount=amount, date=date)
        transaction_count += 1
        total_amount += amount
        if transaction_count > transaction_freq and total_amount >= aggregated_amount:
          break
      
      for src, dst in itertools.product(mid_list, dst_list):
        amount = random.uniform(min_amount, max_amount)
        date = random.randrange(start_day, end_day)
        sub_g.add_edge(src, dst, amount=amount, date=date)
        transaction_count += 1
        total_amount += amount
        if transaction_count > transaction_freq and total_amount >= aggregated_amount:
          break

      subject = max(sub_g.nodes(), key=lambda n:sub_g.degree(n))  # hub vertex


    elif pattern_type == "dense":  # Dense fraud accounts
      subject = members[0]  # Hub account
      dsts = members[1:]

      for dst in dsts:
        amount = random.uniform(min_amount, max_amount)
        date = random.randrange(start_day, end_day)
        sub_g.add_edge(subject, dst, amount=amount, date=date)
      for dst in dsts:
        nb1 = random.choice(dsts)
        if dst != nb1:
          amount = random.uniform(min_amount, max_amount)
          date = random.randrange(start_day, end_day)
          sub_g.add_edge(dst, nb1, amount=amount, date=date)
        nb2 = random.choice(dsts)
        if dst != nb2:
          amount = random.uniform(min_amount, max_amount)
          date = random.randrange(start_day, end_day)
          sub_g.add_edge(nb2, dst, amount=amount, date=date)

      
    else:
      print("Warning: unknown pattern type: %s" % pattern_type)
      return


    ## Add the generated transaction edges to whole transaction graph
    sub_g.graph["subject"] = subject if isFraud else None
    self.fraudgroups[self.fraud_id] = sub_g

    ## Add fraud flags to account vertices
    for n in sub_g.nodes():
      self.g.node[n]["isFraud"] = True
    self.fraud_id += 1
    
  
  
  #### Account and Transaction CSV Output
  def write_account_list(self):
    fname = os.path.join(self.output_dir, self.conf.get("OutputFile", "accounts"))
    with open(fname, "w") as wf:
      writer = csv.writer(wf)
      writer.writerow(["ACCOUNT_ID", "ACCOUNT_BALANCE", "DATE_OPENED", "DATE_CLOSED", "COUNTRY_CODE", "ACCOUNT_TYPE", "suspicious", "isFraud", "modelID"])
      for n in self.g.nodes(data=True):
        aid = n[0]
        prop = n[1]
        balance = "{0:.2f}".format(prop["init_balance"])
        start = prop["start"]
        end = prop["end"]
        country = prop["country"]
        business = prop["business"]
        suspicious = prop["suspicious"]
        isFraud = "true" if prop["isFraud"] else "false"
        modelID = prop["modelID"]
        writer.writerow([aid, balance, start, end, country, business, suspicious, isFraud, modelID])
    print("Exported %d accounts." % self.g.number_of_nodes())
    
  
  def write_transaction_list(self):
    fname = os.path.join(self.output_dir, self.conf.get("OutputFile", "transactions"))
    with open(fname, "w") as wf:
      writer = csv.writer(wf)
      writer.writerow(["id", "src", "dst"])
      for e in self.g.edges(data=True, keys=True):
        src = e[0]
        dst = e[1]
        tid = e[2]
        writer.writerow([tid, src, dst])
    print("Exported %d transactions." % self.g.number_of_edges())



  def write_alert_members_list(self):

    def get_outEdge_attrs(g, vid, name):
      return [v for k, v in nx.get_edge_attributes(g, name).iteritems() if (k[0] == vid or k[1] == vid)]

    fname = os.path.join(self.output_dir, self.conf.get("OutputFile", "alert_members"))
    with open(fname, "w") as wf:
      writer = csv.writer(wf)
      writer.writerow(["alertID", "clientID", "isSubject", "modelID", "minAmount", "maxAmount", "startStep", "endStep"])
      for gid, sub_g in self.fraudgroups.iteritems():
        modelID = sub_g.graph["modelID"]
        for n in sub_g.nodes():
          isSubject = "true" if (sub_g.graph["subject"] == n) else "false"
          minAmount = '{:.2f}'.format(min(get_outEdge_attrs(sub_g, n, "amount")))
          maxAmount = '{:.2f}'.format(max(get_outEdge_attrs(sub_g, n, "amount")))
          minStep = min(get_outEdge_attrs(sub_g, n, "date"))
          maxStep = max(get_outEdge_attrs(sub_g, n, "date"))
          writer.writerow([gid, n, isSubject, modelID, minAmount, maxAmount, minStep, maxStep])

    print("Exported %d alert groups." % len(self.fraudgroups))



if __name__ == "__main__":
  argv = sys.argv
  if len(argv) < 2:
    print("Usage: python %s [ConfFile]" % argv[0])
    exit(1)

  txg = TransactionGenerator(argv[1])
  txg.load_account_list()
  txg.add_base_transactions()
  txg.load_simple_patterns()
  txg.generate_degrees()
  txg.load_aml_rule()
  txg.write_account_list()
  txg.write_transaction_list()
  txg.write_alert_members_list()