update model card README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- generated_from_trainer
|
| 5 |
+
model-index:
|
| 6 |
+
- name: t5-base-pt-asqa-ob
|
| 7 |
+
results: []
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 11 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 12 |
+
|
| 13 |
+
# t5-base-pt-asqa-ob
|
| 14 |
+
|
| 15 |
+
This model is a fine-tuned version of [din0s/t5-base-msmarco-nlgen-ob](https://huggingface.co/din0s/t5-base-msmarco-nlgen-ob) on the None dataset.
|
| 16 |
+
It achieves the following results on the evaluation set:
|
| 17 |
+
- Loss: 1.7481
|
| 18 |
+
- Rougelsum: 12.3722
|
| 19 |
+
|
| 20 |
+
## Model description
|
| 21 |
+
|
| 22 |
+
More information needed
|
| 23 |
+
|
| 24 |
+
## Intended uses & limitations
|
| 25 |
+
|
| 26 |
+
More information needed
|
| 27 |
+
|
| 28 |
+
## Training and evaluation data
|
| 29 |
+
|
| 30 |
+
More information needed
|
| 31 |
+
|
| 32 |
+
## Training procedure
|
| 33 |
+
|
| 34 |
+
### Training hyperparameters
|
| 35 |
+
|
| 36 |
+
The following hyperparameters were used during training:
|
| 37 |
+
- learning_rate: 1e-05
|
| 38 |
+
- train_batch_size: 8
|
| 39 |
+
- eval_batch_size: 8
|
| 40 |
+
- seed: 42
|
| 41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 42 |
+
- lr_scheduler_type: linear
|
| 43 |
+
- num_epochs: 20
|
| 44 |
+
- mixed_precision_training: Native AMP
|
| 45 |
+
|
| 46 |
+
### Training results
|
| 47 |
+
|
| 48 |
+
| Training Loss | Epoch | Step | Validation Loss | Rougelsum |
|
| 49 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|
|
| 50 |
+
| No log | 1.0 | 355 | 1.8760 | 11.5138 |
|
| 51 |
+
| 2.1344 | 2.0 | 710 | 1.8322 | 11.6843 |
|
| 52 |
+
| 1.979 | 3.0 | 1065 | 1.8109 | 11.8592 |
|
| 53 |
+
| 1.979 | 4.0 | 1420 | 1.7967 | 11.9466 |
|
| 54 |
+
| 1.9493 | 5.0 | 1775 | 1.7871 | 12.0333 |
|
| 55 |
+
| 1.9099 | 6.0 | 2130 | 1.7778 | 12.0805 |
|
| 56 |
+
| 1.9099 | 7.0 | 2485 | 1.7720 | 12.1659 |
|
| 57 |
+
| 1.8748 | 8.0 | 2840 | 1.7668 | 12.2039 |
|
| 58 |
+
| 1.8584 | 9.0 | 3195 | 1.7628 | 12.2506 |
|
| 59 |
+
| 1.8362 | 10.0 | 3550 | 1.7601 | 12.2557 |
|
| 60 |
+
| 1.8362 | 11.0 | 3905 | 1.7575 | 12.2718 |
|
| 61 |
+
| 1.8134 | 12.0 | 4260 | 1.7562 | 12.2789 |
|
| 62 |
+
| 1.7996 | 13.0 | 4615 | 1.7538 | 12.3179 |
|
| 63 |
+
| 1.7996 | 14.0 | 4970 | 1.7529 | 12.3035 |
|
| 64 |
+
| 1.8049 | 15.0 | 5325 | 1.7519 | 12.3317 |
|
| 65 |
+
| 1.7898 | 16.0 | 5680 | 1.7510 | 12.3717 |
|
| 66 |
+
| 1.7872 | 17.0 | 6035 | 1.7497 | 12.3750 |
|
| 67 |
+
| 1.7872 | 18.0 | 6390 | 1.7486 | 12.3580 |
|
| 68 |
+
| 1.7759 | 19.0 | 6745 | 1.7483 | 12.3698 |
|
| 69 |
+
| 1.785 | 20.0 | 7100 | 1.7481 | 12.3722 |
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
### Framework versions
|
| 73 |
+
|
| 74 |
+
- Transformers 4.23.0.dev0
|
| 75 |
+
- Pytorch 1.12.1+cu102
|
| 76 |
+
- Datasets 2.4.0
|
| 77 |
+
- Tokenizers 0.12.1
|