digo-prayudha commited on
Commit
156bfbf
·
verified ·
1 Parent(s): 2cf4441

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -8
README.md CHANGED
@@ -7,6 +7,7 @@ tags:
7
  - generated_from_trainer
8
  datasets:
9
  - imagefolder
 
10
  metrics:
11
  - accuracy
12
  model-index:
@@ -25,6 +26,7 @@ model-index:
25
  - name: Accuracy
26
  type: accuracy
27
  value: 0.6125
 
28
  ---
29
 
30
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,22 +34,36 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  # vit-emotion-classification
34
 
35
- This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the FastJobs/Visual_Emotional_Analysis dataset.
36
  It achieves the following results on the evaluation set:
37
  - Loss: 1.3802
38
  - Accuracy: 0.6125
39
 
40
- ## Model description
41
-
42
- More information needed
43
-
44
  ## Intended uses & limitations
45
 
46
- More information needed
 
 
 
 
 
 
47
 
48
  ## Training and evaluation data
49
 
50
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
  ## Training procedure
53
 
@@ -72,10 +88,32 @@ The following hyperparameters were used during training:
72
  | 0.0474 | 7.5 | 300 | 1.3802 | 0.6125 |
73
  | 0.0368 | 10.0 | 400 | 1.4388 | 0.5938 |
74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
 
 
 
76
  ### Framework versions
77
 
78
  - Transformers 4.47.1
79
  - Pytorch 2.5.1+cu121
80
  - Datasets 3.2.0
81
- - Tokenizers 0.21.0
 
7
  - generated_from_trainer
8
  datasets:
9
  - imagefolder
10
+ - FastJobs/Visual_Emotional_Analysis
11
  metrics:
12
  - accuracy
13
  model-index:
 
26
  - name: Accuracy
27
  type: accuracy
28
  value: 0.6125
29
+ pipeline_tag: image-classification
30
  ---
31
 
32
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
34
 
35
  # vit-emotion-classification
36
 
37
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the [FastJobs/Visual_Emotional_Analysis](https://huggingface.co/datasets/FastJobs/Visual_Emotional_Analysis) dataset.
38
  It achieves the following results on the evaluation set:
39
  - Loss: 1.3802
40
  - Accuracy: 0.6125
41
 
 
 
 
 
42
  ## Intended uses & limitations
43
 
44
+ ### Intended Uses
45
+ - Emotion classification from visual inputs (images).
46
+
47
+ ### Limitations
48
+ - May reflect biases from the training dataset.
49
+ - Performance may degrade in domains outside the training data.
50
+ - Not suitable for critical or sensitive decision-making tasks.
51
 
52
  ## Training and evaluation data
53
 
54
+ This model was trained on the [FastJobs/Visual_Emotional_Analysis](https://huggingface.co/datasets/FastJobs/Visual_Emotional_Analysis) dataset.
55
+
56
+ The dataset contains:
57
+ - **800 images** annotated with **8 emotion labels**:
58
+ - Anger
59
+ - Contempt
60
+ - Disgust
61
+ - Fear
62
+ - Happy
63
+ - Neutral
64
+ - Sad
65
+ - Surprise
66
+
67
 
68
  ## Training procedure
69
 
 
88
  | 0.0474 | 7.5 | 300 | 1.3802 | 0.6125 |
89
  | 0.0368 | 10.0 | 400 | 1.4388 | 0.5938 |
90
 
91
+ ## How to use this model
92
+ ```python
93
+ from transformers import AutoImageProcessor, ViTForImageClassification
94
+ import torch
95
+ from PIL import Image
96
+ import requests
97
+
98
+ from huggingface_hub import login
99
+ login(api_key)
100
+
101
+ image = Image.open("image.jpg").convert("RGB")
102
+
103
+ image_processor = AutoImageProcessor.from_pretrained("digo-prayudha/vit-emotion-classification")
104
+ model = ViTForImageClassification.from_pretrained("digo-prayudha/vit-emotion-classification")
105
+
106
+ inputs = image_processor(image, return_tensors="pt")
107
+
108
+ with torch.no_grad():
109
+ logits = model(**inputs).logits
110
 
111
+ predicted_label = logits.argmax(-1).item()
112
+ print(model.config.id2label[predicted_label])
113
+ ```
114
  ### Framework versions
115
 
116
  - Transformers 4.47.1
117
  - Pytorch 2.5.1+cu121
118
  - Datasets 3.2.0
119
+ - Tokenizers 0.21.0