program(1.0) [buildInfo = dict, tensor>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.2.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.2"}})] { func main(tensor x) { tensor encoder_conv_in_bias = const()[name = tensor("encoder_conv_in_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(64)))]; tensor encoder_conv_in_weight = const()[name = tensor("encoder_conv_in_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(640)))]; tensor encoder_down_blocks_0_resnets_0_conv1_bias = const()[name = tensor("encoder_down_blocks_0_resnets_0_conv1_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(14528)))]; tensor encoder_down_blocks_0_resnets_0_conv1_weight = const()[name = tensor("encoder_down_blocks_0_resnets_0_conv1_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(15104)))]; tensor encoder_down_blocks_0_resnets_0_conv2_bias = const()[name = tensor("encoder_down_blocks_0_resnets_0_conv2_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(604992)))]; tensor encoder_down_blocks_0_resnets_0_conv2_weight = const()[name = tensor("encoder_down_blocks_0_resnets_0_conv2_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(605568)))]; tensor encoder_down_blocks_0_resnets_1_conv1_bias = const()[name = tensor("encoder_down_blocks_0_resnets_1_conv1_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1195456)))]; tensor encoder_down_blocks_0_resnets_1_conv1_weight = const()[name = tensor("encoder_down_blocks_0_resnets_1_conv1_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1196032)))]; tensor encoder_down_blocks_0_resnets_1_conv2_bias = const()[name = tensor("encoder_down_blocks_0_resnets_1_conv2_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1785920)))]; tensor encoder_down_blocks_0_resnets_1_conv2_weight = const()[name = tensor("encoder_down_blocks_0_resnets_1_conv2_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1786496)))]; tensor encoder_down_blocks_0_downsamplers_0_conv_bias = const()[name = tensor("encoder_down_blocks_0_downsamplers_0_conv_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(2376384)))]; tensor encoder_down_blocks_0_downsamplers_0_conv_weight = const()[name = tensor("encoder_down_blocks_0_downsamplers_0_conv_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(2376960)))]; tensor encoder_down_blocks_1_resnets_0_conv1_bias = const()[name = tensor("encoder_down_blocks_1_resnets_0_conv1_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(2966848)))]; tensor encoder_down_blocks_1_resnets_0_conv1_weight = const()[name = tensor("encoder_down_blocks_1_resnets_0_conv1_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(2967936)))]; tensor encoder_down_blocks_1_resnets_0_conv2_bias = const()[name = tensor("encoder_down_blocks_1_resnets_0_conv2_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4147648)))]; tensor encoder_down_blocks_1_resnets_0_conv2_weight = const()[name = tensor("encoder_down_blocks_1_resnets_0_conv2_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4148736)))]; tensor encoder_down_blocks_1_resnets_0_conv_shortcut_bias = const()[name = tensor("encoder_down_blocks_1_resnets_0_conv_shortcut_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(6508096)))]; tensor encoder_down_blocks_1_resnets_0_conv_shortcut_weight = const()[name = tensor("encoder_down_blocks_1_resnets_0_conv_shortcut_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(6509184)))]; tensor encoder_down_blocks_1_resnets_1_conv1_bias = const()[name = tensor("encoder_down_blocks_1_resnets_1_conv1_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(6640320)))]; tensor encoder_down_blocks_1_resnets_1_conv1_weight = const()[name = tensor("encoder_down_blocks_1_resnets_1_conv1_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(6641408)))]; tensor encoder_down_blocks_1_resnets_1_conv2_bias = const()[name = tensor("encoder_down_blocks_1_resnets_1_conv2_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(9000768)))]; tensor encoder_down_blocks_1_resnets_1_conv2_weight = const()[name = tensor("encoder_down_blocks_1_resnets_1_conv2_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(9001856)))]; tensor encoder_down_blocks_1_downsamplers_0_conv_bias = const()[name = tensor("encoder_down_blocks_1_downsamplers_0_conv_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(11361216)))]; tensor encoder_down_blocks_1_downsamplers_0_conv_weight = const()[name = tensor("encoder_down_blocks_1_downsamplers_0_conv_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(11362304)))]; tensor encoder_down_blocks_2_resnets_0_conv1_bias = const()[name = tensor("encoder_down_blocks_2_resnets_0_conv1_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(13721664)))]; tensor encoder_down_blocks_2_resnets_0_conv1_weight = const()[name = tensor("encoder_down_blocks_2_resnets_0_conv1_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(13723776)))]; tensor encoder_down_blocks_2_resnets_0_conv2_bias = const()[name = tensor("encoder_down_blocks_2_resnets_0_conv2_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(18442432)))]; tensor encoder_down_blocks_2_resnets_0_conv2_weight = const()[name = tensor("encoder_down_blocks_2_resnets_0_conv2_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(18444544)))]; tensor encoder_down_blocks_2_resnets_0_conv_shortcut_bias = const()[name = tensor("encoder_down_blocks_2_resnets_0_conv_shortcut_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(27881792)))]; tensor encoder_down_blocks_2_resnets_0_conv_shortcut_weight = const()[name = tensor("encoder_down_blocks_2_resnets_0_conv_shortcut_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(27883904)))]; tensor encoder_down_blocks_2_resnets_1_conv1_bias = const()[name = tensor("encoder_down_blocks_2_resnets_1_conv1_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(28408256)))]; tensor encoder_down_blocks_2_resnets_1_conv1_weight = const()[name = tensor("encoder_down_blocks_2_resnets_1_conv1_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(28410368)))]; tensor encoder_down_blocks_2_resnets_1_conv2_bias = const()[name = tensor("encoder_down_blocks_2_resnets_1_conv2_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(37847616)))]; tensor encoder_down_blocks_2_resnets_1_conv2_weight = const()[name = tensor("encoder_down_blocks_2_resnets_1_conv2_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(37849728)))]; tensor encoder_down_blocks_2_downsamplers_0_conv_bias = const()[name = tensor("encoder_down_blocks_2_downsamplers_0_conv_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(47286976)))]; tensor encoder_down_blocks_2_downsamplers_0_conv_weight = const()[name = tensor("encoder_down_blocks_2_downsamplers_0_conv_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(47289088)))]; tensor encoder_down_blocks_3_resnets_0_conv1_bias = const()[name = tensor("encoder_down_blocks_3_resnets_0_conv1_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(56726336)))]; tensor encoder_down_blocks_3_resnets_0_conv1_weight = const()[name = tensor("encoder_down_blocks_3_resnets_0_conv1_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(56728448)))]; tensor encoder_down_blocks_3_resnets_0_conv2_bias = const()[name = tensor("encoder_down_blocks_3_resnets_0_conv2_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(66165696)))]; tensor encoder_down_blocks_3_resnets_0_conv2_weight = const()[name = tensor("encoder_down_blocks_3_resnets_0_conv2_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(66167808)))]; tensor encoder_down_blocks_3_resnets_1_conv1_bias = const()[name = tensor("encoder_down_blocks_3_resnets_1_conv1_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(75605056)))]; tensor encoder_down_blocks_3_resnets_1_conv1_weight = const()[name = tensor("encoder_down_blocks_3_resnets_1_conv1_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(75607168)))]; tensor encoder_down_blocks_3_resnets_1_conv2_bias = const()[name = tensor("encoder_down_blocks_3_resnets_1_conv2_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(85044416)))]; tensor encoder_down_blocks_3_resnets_1_conv2_weight = const()[name = tensor("encoder_down_blocks_3_resnets_1_conv2_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(85046528)))]; tensor encoder_mid_block_resnets_0_conv1_bias = const()[name = tensor("encoder_mid_block_resnets_0_conv1_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(94483776)))]; tensor encoder_mid_block_resnets_0_conv1_weight = const()[name = tensor("encoder_mid_block_resnets_0_conv1_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(94485888)))]; tensor encoder_mid_block_resnets_0_conv2_bias = const()[name = tensor("encoder_mid_block_resnets_0_conv2_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(103923136)))]; tensor encoder_mid_block_resnets_0_conv2_weight = const()[name = tensor("encoder_mid_block_resnets_0_conv2_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(103925248)))]; tensor encoder_mid_block_attentions_0_to_q_bias = const()[name = tensor("encoder_mid_block_attentions_0_to_q_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(113362496)))]; tensor encoder_mid_block_attentions_0_to_q_weight = const()[name = tensor("encoder_mid_block_attentions_0_to_q_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(113364608)))]; tensor encoder_mid_block_attentions_0_to_k_bias = const()[name = tensor("encoder_mid_block_attentions_0_to_k_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(114413248)))]; tensor encoder_mid_block_attentions_0_to_k_weight = const()[name = tensor("encoder_mid_block_attentions_0_to_k_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(114415360)))]; tensor encoder_mid_block_attentions_0_to_v_bias = const()[name = tensor("encoder_mid_block_attentions_0_to_v_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(115464000)))]; tensor encoder_mid_block_attentions_0_to_v_weight = const()[name = tensor("encoder_mid_block_attentions_0_to_v_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(115466112)))]; tensor encoder_mid_block_attentions_0_to_out_0_bias = const()[name = tensor("encoder_mid_block_attentions_0_to_out_0_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(116514752)))]; tensor encoder_mid_block_attentions_0_to_out_0_weight = const()[name = tensor("encoder_mid_block_attentions_0_to_out_0_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(116516864)))]; tensor encoder_mid_block_resnets_1_conv1_bias = const()[name = tensor("encoder_mid_block_resnets_1_conv1_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(117565504)))]; tensor encoder_mid_block_resnets_1_conv1_weight = const()[name = tensor("encoder_mid_block_resnets_1_conv1_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(117567616)))]; tensor encoder_mid_block_resnets_1_conv2_bias = const()[name = tensor("encoder_mid_block_resnets_1_conv2_bias"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(127004864)))]; tensor encoder_mid_block_resnets_1_conv2_weight = const()[name = tensor("encoder_mid_block_resnets_1_conv2_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(127006976)))]; tensor encoder_conv_out_bias = const()[name = tensor("encoder_conv_out_bias"), val = tensor([0x1.7f4p-6, -0x1.5dcp-5, 0x1.84cp-3, 0x1.e84p-3, 0x1.e34p-3, 0x1.0c8p-4, 0x1.718p-5, -0x1.998p-3])]; tensor encoder_conv_out_weight = const()[name = tensor("encoder_conv_out_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136444224)))]; tensor quant_conv_bias = const()[name = tensor("quant_conv_bias"), val = tensor([0x1.f48p-4, 0x1.088p-4, -0x1.e48p-3, -0x1.bf8p-2, -0x1.56cp+4, -0x1.598p+4, -0x1.62p+4, -0x1.664p+4])]; tensor quant_conv_weight = const()[name = tensor("quant_conv_weight"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136591744)))]; tensor var_15 = const()[name = tensor("op_15"), val = tensor(1)]; tensor var_33 = const()[name = tensor("op_33"), val = tensor([1, 1])]; tensor var_35 = const()[name = tensor("op_35"), val = tensor([1, 1])]; tensor input_1_pad_type_0 = const()[name = tensor("input_1_pad_type_0"), val = tensor("custom")]; tensor input_1_pad_0 = const()[name = tensor("input_1_pad_0"), val = tensor([1, 1, 1, 1])]; tensor input_1 = conv(bias = encoder_conv_in_bias, dilations = var_35, groups = var_15, pad = input_1_pad_0, pad_type = input_1_pad_type_0, strides = var_33, weight = encoder_conv_in_weight, x = x)[name = tensor("input_1")]; tensor reshape_0_shape_0 = const()[name = tensor("reshape_0_shape_0"), val = tensor([1, 32, 4, 1024, 1024])]; tensor reshape_0 = reshape(shape = reshape_0_shape_0, x = input_1)[name = tensor("reshape_0")]; tensor reduce_mean_0_axes_0 = const()[name = tensor("reduce_mean_0_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_0_keep_dims_0 = const()[name = tensor("reduce_mean_0_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_0 = reduce_mean(axes = reduce_mean_0_axes_0, keep_dims = reduce_mean_0_keep_dims_0, x = reshape_0)[name = tensor("reduce_mean_0")]; tensor sub_0 = sub(x = reshape_0, y = reduce_mean_0)[name = tensor("sub_0")]; tensor square_0 = square(x = sub_0)[name = tensor("square_0")]; tensor reduce_mean_2_axes_0 = const()[name = tensor("reduce_mean_2_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_2_keep_dims_0 = const()[name = tensor("reduce_mean_2_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_2 = reduce_mean(axes = reduce_mean_2_axes_0, keep_dims = reduce_mean_2_keep_dims_0, x = square_0)[name = tensor("reduce_mean_2")]; tensor add_0_y_0 = const()[name = tensor("add_0_y_0"), val = tensor(0x1.0c6f7ap-20)]; tensor add_0 = add(x = reduce_mean_2, y = add_0_y_0)[name = tensor("add_0")]; tensor sqrt_0 = sqrt(x = add_0)[name = tensor("sqrt_0")]; tensor real_div_0 = real_div(x = sub_0, y = sqrt_0)[name = tensor("real_div_0")]; tensor reshape_1_shape_0 = const()[name = tensor("reshape_1_shape_0"), val = tensor([1, 128, 1024, 1024])]; tensor reshape_1 = reshape(shape = reshape_1_shape_0, x = real_div_0)[name = tensor("reshape_1")]; tensor add_1_mean_0 = const()[name = tensor("add_1_mean_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136592064)))]; tensor add_1_variance_0 = const()[name = tensor("add_1_variance_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136592640)))]; tensor add_1_gamma_0 = const()[name = tensor("add_1_gamma_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136593216)))]; tensor add_1_beta_0 = const()[name = tensor("add_1_beta_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136593792)))]; tensor add_1_epsilon_0 = const()[name = tensor("add_1_epsilon_0"), val = tensor(0x1.4f8b58p-17)]; tensor add_1 = batch_norm(beta = add_1_beta_0, epsilon = add_1_epsilon_0, gamma = add_1_gamma_0, mean = add_1_mean_0, variance = add_1_variance_0, x = reshape_1)[name = tensor("add_1")]; tensor input_5 = silu(x = add_1)[name = tensor("input_5")]; tensor var_54 = const()[name = tensor("op_54"), val = tensor([1, 1])]; tensor var_56 = const()[name = tensor("op_56"), val = tensor([1, 1])]; tensor input_7_pad_type_0 = const()[name = tensor("input_7_pad_type_0"), val = tensor("custom")]; tensor input_7_pad_0 = const()[name = tensor("input_7_pad_0"), val = tensor([1, 1, 1, 1])]; tensor input_7 = conv(bias = encoder_down_blocks_0_resnets_0_conv1_bias, dilations = var_56, groups = var_15, pad = input_7_pad_0, pad_type = input_7_pad_type_0, strides = var_54, weight = encoder_down_blocks_0_resnets_0_conv1_weight, x = input_5)[name = tensor("input_7")]; tensor reshape_4_shape_0 = const()[name = tensor("reshape_4_shape_0"), val = tensor([1, 32, 4, 1024, 1024])]; tensor reshape_4 = reshape(shape = reshape_4_shape_0, x = input_7)[name = tensor("reshape_4")]; tensor reduce_mean_3_axes_0 = const()[name = tensor("reduce_mean_3_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_3_keep_dims_0 = const()[name = tensor("reduce_mean_3_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_3 = reduce_mean(axes = reduce_mean_3_axes_0, keep_dims = reduce_mean_3_keep_dims_0, x = reshape_4)[name = tensor("reduce_mean_3")]; tensor sub_2 = sub(x = reshape_4, y = reduce_mean_3)[name = tensor("sub_2")]; tensor square_1 = square(x = sub_2)[name = tensor("square_1")]; tensor reduce_mean_5_axes_0 = const()[name = tensor("reduce_mean_5_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_5_keep_dims_0 = const()[name = tensor("reduce_mean_5_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_5 = reduce_mean(axes = reduce_mean_5_axes_0, keep_dims = reduce_mean_5_keep_dims_0, x = square_1)[name = tensor("reduce_mean_5")]; tensor add_2_y_0 = const()[name = tensor("add_2_y_0"), val = tensor(0x1.0c6f7ap-20)]; tensor add_2 = add(x = reduce_mean_5, y = add_2_y_0)[name = tensor("add_2")]; tensor sqrt_1 = sqrt(x = add_2)[name = tensor("sqrt_1")]; tensor real_div_1 = real_div(x = sub_2, y = sqrt_1)[name = tensor("real_div_1")]; tensor reshape_5_shape_0 = const()[name = tensor("reshape_5_shape_0"), val = tensor([1, 128, 1024, 1024])]; tensor reshape_5 = reshape(shape = reshape_5_shape_0, x = real_div_1)[name = tensor("reshape_5")]; tensor add_3_gamma_0 = const()[name = tensor("add_3_gamma_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136594368)))]; tensor add_3_beta_0 = const()[name = tensor("add_3_beta_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136594944)))]; tensor add_3_epsilon_0 = const()[name = tensor("add_3_epsilon_0"), val = tensor(0x1.4f8b58p-17)]; tensor add_3 = batch_norm(beta = add_3_beta_0, epsilon = add_3_epsilon_0, gamma = add_3_gamma_0, mean = add_1_mean_0, variance = add_1_variance_0, x = reshape_5)[name = tensor("add_3")]; tensor input_11 = silu(x = add_3)[name = tensor("input_11")]; tensor var_66 = const()[name = tensor("op_66"), val = tensor([1, 1])]; tensor var_68 = const()[name = tensor("op_68"), val = tensor([1, 1])]; tensor hidden_states_1_pad_type_0 = const()[name = tensor("hidden_states_1_pad_type_0"), val = tensor("custom")]; tensor hidden_states_1_pad_0 = const()[name = tensor("hidden_states_1_pad_0"), val = tensor([1, 1, 1, 1])]; tensor hidden_states_1 = conv(bias = encoder_down_blocks_0_resnets_0_conv2_bias, dilations = var_68, groups = var_15, pad = hidden_states_1_pad_0, pad_type = hidden_states_1_pad_type_0, strides = var_66, weight = encoder_down_blocks_0_resnets_0_conv2_weight, x = input_11)[name = tensor("hidden_states_1")]; tensor var_71 = add(x = input_1, y = hidden_states_1)[name = tensor("op_71")]; tensor reshape_8_shape_0 = const()[name = tensor("reshape_8_shape_0"), val = tensor([1, 32, 4, 1024, 1024])]; tensor reshape_8 = reshape(shape = reshape_8_shape_0, x = var_71)[name = tensor("reshape_8")]; tensor reduce_mean_6_axes_0 = const()[name = tensor("reduce_mean_6_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_6_keep_dims_0 = const()[name = tensor("reduce_mean_6_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_6 = reduce_mean(axes = reduce_mean_6_axes_0, keep_dims = reduce_mean_6_keep_dims_0, x = reshape_8)[name = tensor("reduce_mean_6")]; tensor sub_4 = sub(x = reshape_8, y = reduce_mean_6)[name = tensor("sub_4")]; tensor square_2 = square(x = sub_4)[name = tensor("square_2")]; tensor reduce_mean_8_axes_0 = const()[name = tensor("reduce_mean_8_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_8_keep_dims_0 = const()[name = tensor("reduce_mean_8_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_8 = reduce_mean(axes = reduce_mean_8_axes_0, keep_dims = reduce_mean_8_keep_dims_0, x = square_2)[name = tensor("reduce_mean_8")]; tensor add_4_y_0 = const()[name = tensor("add_4_y_0"), val = tensor(0x1.0c6f7ap-20)]; tensor add_4 = add(x = reduce_mean_8, y = add_4_y_0)[name = tensor("add_4")]; tensor sqrt_2 = sqrt(x = add_4)[name = tensor("sqrt_2")]; tensor real_div_2 = real_div(x = sub_4, y = sqrt_2)[name = tensor("real_div_2")]; tensor reshape_9_shape_0 = const()[name = tensor("reshape_9_shape_0"), val = tensor([1, 128, 1024, 1024])]; tensor reshape_9 = reshape(shape = reshape_9_shape_0, x = real_div_2)[name = tensor("reshape_9")]; tensor add_5_gamma_0 = const()[name = tensor("add_5_gamma_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136595520)))]; tensor add_5_beta_0 = const()[name = tensor("add_5_beta_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136596096)))]; tensor add_5_epsilon_0 = const()[name = tensor("add_5_epsilon_0"), val = tensor(0x1.4f8b58p-17)]; tensor add_5 = batch_norm(beta = add_5_beta_0, epsilon = add_5_epsilon_0, gamma = add_5_gamma_0, mean = add_1_mean_0, variance = add_1_variance_0, x = reshape_9)[name = tensor("add_5")]; tensor input_19 = silu(x = add_5)[name = tensor("input_19")]; tensor var_84 = const()[name = tensor("op_84"), val = tensor([1, 1])]; tensor var_86 = const()[name = tensor("op_86"), val = tensor([1, 1])]; tensor input_21_pad_type_0 = const()[name = tensor("input_21_pad_type_0"), val = tensor("custom")]; tensor input_21_pad_0 = const()[name = tensor("input_21_pad_0"), val = tensor([1, 1, 1, 1])]; tensor input_21 = conv(bias = encoder_down_blocks_0_resnets_1_conv1_bias, dilations = var_86, groups = var_15, pad = input_21_pad_0, pad_type = input_21_pad_type_0, strides = var_84, weight = encoder_down_blocks_0_resnets_1_conv1_weight, x = input_19)[name = tensor("input_21")]; tensor reshape_12_shape_0 = const()[name = tensor("reshape_12_shape_0"), val = tensor([1, 32, 4, 1024, 1024])]; tensor reshape_12 = reshape(shape = reshape_12_shape_0, x = input_21)[name = tensor("reshape_12")]; tensor reduce_mean_9_axes_0 = const()[name = tensor("reduce_mean_9_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_9_keep_dims_0 = const()[name = tensor("reduce_mean_9_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_9 = reduce_mean(axes = reduce_mean_9_axes_0, keep_dims = reduce_mean_9_keep_dims_0, x = reshape_12)[name = tensor("reduce_mean_9")]; tensor sub_6 = sub(x = reshape_12, y = reduce_mean_9)[name = tensor("sub_6")]; tensor square_3 = square(x = sub_6)[name = tensor("square_3")]; tensor reduce_mean_11_axes_0 = const()[name = tensor("reduce_mean_11_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_11_keep_dims_0 = const()[name = tensor("reduce_mean_11_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_11 = reduce_mean(axes = reduce_mean_11_axes_0, keep_dims = reduce_mean_11_keep_dims_0, x = square_3)[name = tensor("reduce_mean_11")]; tensor add_6_y_0 = const()[name = tensor("add_6_y_0"), val = tensor(0x1.0c6f7ap-20)]; tensor add_6 = add(x = reduce_mean_11, y = add_6_y_0)[name = tensor("add_6")]; tensor sqrt_3 = sqrt(x = add_6)[name = tensor("sqrt_3")]; tensor real_div_3 = real_div(x = sub_6, y = sqrt_3)[name = tensor("real_div_3")]; tensor reshape_13_shape_0 = const()[name = tensor("reshape_13_shape_0"), val = tensor([1, 128, 1024, 1024])]; tensor reshape_13 = reshape(shape = reshape_13_shape_0, x = real_div_3)[name = tensor("reshape_13")]; tensor add_7_gamma_0 = const()[name = tensor("add_7_gamma_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136596672)))]; tensor add_7_beta_0 = const()[name = tensor("add_7_beta_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136597248)))]; tensor add_7_epsilon_0 = const()[name = tensor("add_7_epsilon_0"), val = tensor(0x1.4f8b58p-17)]; tensor add_7 = batch_norm(beta = add_7_beta_0, epsilon = add_7_epsilon_0, gamma = add_7_gamma_0, mean = add_1_mean_0, variance = add_1_variance_0, x = reshape_13)[name = tensor("add_7")]; tensor input_25 = silu(x = add_7)[name = tensor("input_25")]; tensor var_96 = const()[name = tensor("op_96"), val = tensor([1, 1])]; tensor var_98 = const()[name = tensor("op_98"), val = tensor([1, 1])]; tensor hidden_states_3_pad_type_0 = const()[name = tensor("hidden_states_3_pad_type_0"), val = tensor("custom")]; tensor hidden_states_3_pad_0 = const()[name = tensor("hidden_states_3_pad_0"), val = tensor([1, 1, 1, 1])]; tensor hidden_states_3 = conv(bias = encoder_down_blocks_0_resnets_1_conv2_bias, dilations = var_98, groups = var_15, pad = hidden_states_3_pad_0, pad_type = hidden_states_3_pad_type_0, strides = var_96, weight = encoder_down_blocks_0_resnets_1_conv2_weight, x = input_25)[name = tensor("hidden_states_3")]; tensor var_101 = add(x = var_71, y = hidden_states_3)[name = tensor("op_101")]; tensor const_0 = const()[name = tensor("const_0"), val = tensor(0x0p+0)]; tensor hidden_states_7_pad_0 = const()[name = tensor("hidden_states_7_pad_0"), val = tensor([0, 0, 0, 0, 0, 1, 0, 1])]; tensor hidden_states_7_mode_0 = const()[name = tensor("hidden_states_7_mode_0"), val = tensor("constant")]; tensor hidden_states_7 = pad(constant_val = const_0, mode = hidden_states_7_mode_0, pad = hidden_states_7_pad_0, x = var_101)[name = tensor("hidden_states_7")]; tensor var_109 = const()[name = tensor("op_109"), val = tensor([2, 2])]; tensor var_111 = const()[name = tensor("op_111"), val = tensor([1, 1])]; tensor input_29_pad_type_0 = const()[name = tensor("input_29_pad_type_0"), val = tensor("custom")]; tensor input_29_pad_0 = const()[name = tensor("input_29_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_29 = conv(bias = encoder_down_blocks_0_downsamplers_0_conv_bias, dilations = var_111, groups = var_15, pad = input_29_pad_0, pad_type = input_29_pad_type_0, strides = var_109, weight = encoder_down_blocks_0_downsamplers_0_conv_weight, x = hidden_states_7)[name = tensor("input_29")]; tensor reshape_16_shape_0 = const()[name = tensor("reshape_16_shape_0"), val = tensor([1, 32, 4, 512, 512])]; tensor reshape_16 = reshape(shape = reshape_16_shape_0, x = input_29)[name = tensor("reshape_16")]; tensor reduce_mean_12_axes_0 = const()[name = tensor("reduce_mean_12_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_12_keep_dims_0 = const()[name = tensor("reduce_mean_12_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_12 = reduce_mean(axes = reduce_mean_12_axes_0, keep_dims = reduce_mean_12_keep_dims_0, x = reshape_16)[name = tensor("reduce_mean_12")]; tensor sub_8 = sub(x = reshape_16, y = reduce_mean_12)[name = tensor("sub_8")]; tensor square_4 = square(x = sub_8)[name = tensor("square_4")]; tensor reduce_mean_14_axes_0 = const()[name = tensor("reduce_mean_14_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_14_keep_dims_0 = const()[name = tensor("reduce_mean_14_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_14 = reduce_mean(axes = reduce_mean_14_axes_0, keep_dims = reduce_mean_14_keep_dims_0, x = square_4)[name = tensor("reduce_mean_14")]; tensor add_8_y_0 = const()[name = tensor("add_8_y_0"), val = tensor(0x1.0c6f7ap-20)]; tensor add_8 = add(x = reduce_mean_14, y = add_8_y_0)[name = tensor("add_8")]; tensor sqrt_4 = sqrt(x = add_8)[name = tensor("sqrt_4")]; tensor real_div_4 = real_div(x = sub_8, y = sqrt_4)[name = tensor("real_div_4")]; tensor reshape_17_shape_0 = const()[name = tensor("reshape_17_shape_0"), val = tensor([1, 128, 512, 512])]; tensor reshape_17 = reshape(shape = reshape_17_shape_0, x = real_div_4)[name = tensor("reshape_17")]; tensor add_9_gamma_0 = const()[name = tensor("add_9_gamma_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136597824)))]; tensor add_9_beta_0 = const()[name = tensor("add_9_beta_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136598400)))]; tensor add_9_epsilon_0 = const()[name = tensor("add_9_epsilon_0"), val = tensor(0x1.4f8b58p-17)]; tensor add_9 = batch_norm(beta = add_9_beta_0, epsilon = add_9_epsilon_0, gamma = add_9_gamma_0, mean = add_1_mean_0, variance = add_1_variance_0, x = reshape_17)[name = tensor("add_9")]; tensor input_33 = silu(x = add_9)[name = tensor("input_33")]; tensor var_131 = const()[name = tensor("op_131"), val = tensor([1, 1])]; tensor var_133 = const()[name = tensor("op_133"), val = tensor([1, 1])]; tensor input_35_pad_type_0 = const()[name = tensor("input_35_pad_type_0"), val = tensor("custom")]; tensor input_35_pad_0 = const()[name = tensor("input_35_pad_0"), val = tensor([1, 1, 1, 1])]; tensor input_35 = conv(bias = encoder_down_blocks_1_resnets_0_conv1_bias, dilations = var_133, groups = var_15, pad = input_35_pad_0, pad_type = input_35_pad_type_0, strides = var_131, weight = encoder_down_blocks_1_resnets_0_conv1_weight, x = input_33)[name = tensor("input_35")]; tensor reshape_20_shape_0 = const()[name = tensor("reshape_20_shape_0"), val = tensor([1, 32, 8, 512, 512])]; tensor reshape_20 = reshape(shape = reshape_20_shape_0, x = input_35)[name = tensor("reshape_20")]; tensor reduce_mean_15_axes_0 = const()[name = tensor("reduce_mean_15_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_15_keep_dims_0 = const()[name = tensor("reduce_mean_15_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_15 = reduce_mean(axes = reduce_mean_15_axes_0, keep_dims = reduce_mean_15_keep_dims_0, x = reshape_20)[name = tensor("reduce_mean_15")]; tensor sub_10 = sub(x = reshape_20, y = reduce_mean_15)[name = tensor("sub_10")]; tensor square_5 = square(x = sub_10)[name = tensor("square_5")]; tensor reduce_mean_17_axes_0 = const()[name = tensor("reduce_mean_17_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_17_keep_dims_0 = const()[name = tensor("reduce_mean_17_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_17 = reduce_mean(axes = reduce_mean_17_axes_0, keep_dims = reduce_mean_17_keep_dims_0, x = square_5)[name = tensor("reduce_mean_17")]; tensor add_10_y_0 = const()[name = tensor("add_10_y_0"), val = tensor(0x1.0c6f7ap-20)]; tensor add_10 = add(x = reduce_mean_17, y = add_10_y_0)[name = tensor("add_10")]; tensor sqrt_5 = sqrt(x = add_10)[name = tensor("sqrt_5")]; tensor real_div_5 = real_div(x = sub_10, y = sqrt_5)[name = tensor("real_div_5")]; tensor reshape_21_shape_0 = const()[name = tensor("reshape_21_shape_0"), val = tensor([1, 256, 512, 512])]; tensor reshape_21 = reshape(shape = reshape_21_shape_0, x = real_div_5)[name = tensor("reshape_21")]; tensor add_11_mean_0 = const()[name = tensor("add_11_mean_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136598976)))]; tensor add_11_variance_0 = const()[name = tensor("add_11_variance_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136600064)))]; tensor add_11_gamma_0 = const()[name = tensor("add_11_gamma_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136601152)))]; tensor add_11_beta_0 = const()[name = tensor("add_11_beta_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136602240)))]; tensor add_11_epsilon_0 = const()[name = tensor("add_11_epsilon_0"), val = tensor(0x1.4f8b58p-17)]; tensor add_11 = batch_norm(beta = add_11_beta_0, epsilon = add_11_epsilon_0, gamma = add_11_gamma_0, mean = add_11_mean_0, variance = add_11_variance_0, x = reshape_21)[name = tensor("add_11")]; tensor input_39 = silu(x = add_11)[name = tensor("input_39")]; tensor var_143 = const()[name = tensor("op_143"), val = tensor([1, 1])]; tensor var_145 = const()[name = tensor("op_145"), val = tensor([1, 1])]; tensor hidden_states_9_pad_type_0 = const()[name = tensor("hidden_states_9_pad_type_0"), val = tensor("custom")]; tensor hidden_states_9_pad_0 = const()[name = tensor("hidden_states_9_pad_0"), val = tensor([1, 1, 1, 1])]; tensor hidden_states_9 = conv(bias = encoder_down_blocks_1_resnets_0_conv2_bias, dilations = var_145, groups = var_15, pad = hidden_states_9_pad_0, pad_type = hidden_states_9_pad_type_0, strides = var_143, weight = encoder_down_blocks_1_resnets_0_conv2_weight, x = input_39)[name = tensor("hidden_states_9")]; tensor var_150 = const()[name = tensor("op_150"), val = tensor([1, 1])]; tensor var_152 = const()[name = tensor("op_152"), val = tensor([1, 1])]; tensor input_tensor_1_pad_type_0 = const()[name = tensor("input_tensor_1_pad_type_0"), val = tensor("custom")]; tensor input_tensor_1_pad_0 = const()[name = tensor("input_tensor_1_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_tensor_1 = conv(bias = encoder_down_blocks_1_resnets_0_conv_shortcut_bias, dilations = var_152, groups = var_15, pad = input_tensor_1_pad_0, pad_type = input_tensor_1_pad_type_0, strides = var_150, weight = encoder_down_blocks_1_resnets_0_conv_shortcut_weight, x = input_29)[name = tensor("input_tensor_1")]; tensor var_155 = add(x = input_tensor_1, y = hidden_states_9)[name = tensor("op_155")]; tensor reshape_24_shape_0 = const()[name = tensor("reshape_24_shape_0"), val = tensor([1, 32, 8, 512, 512])]; tensor reshape_24 = reshape(shape = reshape_24_shape_0, x = var_155)[name = tensor("reshape_24")]; tensor reduce_mean_18_axes_0 = const()[name = tensor("reduce_mean_18_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_18_keep_dims_0 = const()[name = tensor("reduce_mean_18_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_18 = reduce_mean(axes = reduce_mean_18_axes_0, keep_dims = reduce_mean_18_keep_dims_0, x = reshape_24)[name = tensor("reduce_mean_18")]; tensor sub_12 = sub(x = reshape_24, y = reduce_mean_18)[name = tensor("sub_12")]; tensor square_6 = square(x = sub_12)[name = tensor("square_6")]; tensor reduce_mean_20_axes_0 = const()[name = tensor("reduce_mean_20_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_20_keep_dims_0 = const()[name = tensor("reduce_mean_20_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_20 = reduce_mean(axes = reduce_mean_20_axes_0, keep_dims = reduce_mean_20_keep_dims_0, x = square_6)[name = tensor("reduce_mean_20")]; tensor add_12_y_0 = const()[name = tensor("add_12_y_0"), val = tensor(0x1.0c6f7ap-20)]; tensor add_12 = add(x = reduce_mean_20, y = add_12_y_0)[name = tensor("add_12")]; tensor sqrt_6 = sqrt(x = add_12)[name = tensor("sqrt_6")]; tensor real_div_6 = real_div(x = sub_12, y = sqrt_6)[name = tensor("real_div_6")]; tensor reshape_25_shape_0 = const()[name = tensor("reshape_25_shape_0"), val = tensor([1, 256, 512, 512])]; tensor reshape_25 = reshape(shape = reshape_25_shape_0, x = real_div_6)[name = tensor("reshape_25")]; tensor add_13_gamma_0 = const()[name = tensor("add_13_gamma_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136603328)))]; tensor add_13_beta_0 = const()[name = tensor("add_13_beta_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136604416)))]; tensor add_13_epsilon_0 = const()[name = tensor("add_13_epsilon_0"), val = tensor(0x1.4f8b58p-17)]; tensor add_13 = batch_norm(beta = add_13_beta_0, epsilon = add_13_epsilon_0, gamma = add_13_gamma_0, mean = add_11_mean_0, variance = add_11_variance_0, x = reshape_25)[name = tensor("add_13")]; tensor input_47 = silu(x = add_13)[name = tensor("input_47")]; tensor var_168 = const()[name = tensor("op_168"), val = tensor([1, 1])]; tensor var_170 = const()[name = tensor("op_170"), val = tensor([1, 1])]; tensor input_49_pad_type_0 = const()[name = tensor("input_49_pad_type_0"), val = tensor("custom")]; tensor input_49_pad_0 = const()[name = tensor("input_49_pad_0"), val = tensor([1, 1, 1, 1])]; tensor input_49 = conv(bias = encoder_down_blocks_1_resnets_1_conv1_bias, dilations = var_170, groups = var_15, pad = input_49_pad_0, pad_type = input_49_pad_type_0, strides = var_168, weight = encoder_down_blocks_1_resnets_1_conv1_weight, x = input_47)[name = tensor("input_49")]; tensor reshape_28_shape_0 = const()[name = tensor("reshape_28_shape_0"), val = tensor([1, 32, 8, 512, 512])]; tensor reshape_28 = reshape(shape = reshape_28_shape_0, x = input_49)[name = tensor("reshape_28")]; tensor reduce_mean_21_axes_0 = const()[name = tensor("reduce_mean_21_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_21_keep_dims_0 = const()[name = tensor("reduce_mean_21_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_21 = reduce_mean(axes = reduce_mean_21_axes_0, keep_dims = reduce_mean_21_keep_dims_0, x = reshape_28)[name = tensor("reduce_mean_21")]; tensor sub_14 = sub(x = reshape_28, y = reduce_mean_21)[name = tensor("sub_14")]; tensor square_7 = square(x = sub_14)[name = tensor("square_7")]; tensor reduce_mean_23_axes_0 = const()[name = tensor("reduce_mean_23_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_23_keep_dims_0 = const()[name = tensor("reduce_mean_23_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_23 = reduce_mean(axes = reduce_mean_23_axes_0, keep_dims = reduce_mean_23_keep_dims_0, x = square_7)[name = tensor("reduce_mean_23")]; tensor add_14_y_0 = const()[name = tensor("add_14_y_0"), val = tensor(0x1.0c6f7ap-20)]; tensor add_14 = add(x = reduce_mean_23, y = add_14_y_0)[name = tensor("add_14")]; tensor sqrt_7 = sqrt(x = add_14)[name = tensor("sqrt_7")]; tensor real_div_7 = real_div(x = sub_14, y = sqrt_7)[name = tensor("real_div_7")]; tensor reshape_29_shape_0 = const()[name = tensor("reshape_29_shape_0"), val = tensor([1, 256, 512, 512])]; tensor reshape_29 = reshape(shape = reshape_29_shape_0, x = real_div_7)[name = tensor("reshape_29")]; tensor add_15_gamma_0 = const()[name = tensor("add_15_gamma_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136605504)))]; tensor add_15_beta_0 = const()[name = tensor("add_15_beta_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136606592)))]; tensor add_15_epsilon_0 = const()[name = tensor("add_15_epsilon_0"), val = tensor(0x1.4f8b58p-17)]; tensor add_15 = batch_norm(beta = add_15_beta_0, epsilon = add_15_epsilon_0, gamma = add_15_gamma_0, mean = add_11_mean_0, variance = add_11_variance_0, x = reshape_29)[name = tensor("add_15")]; tensor input_53 = silu(x = add_15)[name = tensor("input_53")]; tensor var_180 = const()[name = tensor("op_180"), val = tensor([1, 1])]; tensor var_182 = const()[name = tensor("op_182"), val = tensor([1, 1])]; tensor hidden_states_11_pad_type_0 = const()[name = tensor("hidden_states_11_pad_type_0"), val = tensor("custom")]; tensor hidden_states_11_pad_0 = const()[name = tensor("hidden_states_11_pad_0"), val = tensor([1, 1, 1, 1])]; tensor hidden_states_11 = conv(bias = encoder_down_blocks_1_resnets_1_conv2_bias, dilations = var_182, groups = var_15, pad = hidden_states_11_pad_0, pad_type = hidden_states_11_pad_type_0, strides = var_180, weight = encoder_down_blocks_1_resnets_1_conv2_weight, x = input_53)[name = tensor("hidden_states_11")]; tensor var_185 = add(x = var_155, y = hidden_states_11)[name = tensor("op_185")]; tensor const_1 = const()[name = tensor("const_1"), val = tensor(0x0p+0)]; tensor hidden_states_15_pad_0 = const()[name = tensor("hidden_states_15_pad_0"), val = tensor([0, 0, 0, 0, 0, 1, 0, 1])]; tensor hidden_states_15_mode_0 = const()[name = tensor("hidden_states_15_mode_0"), val = tensor("constant")]; tensor hidden_states_15 = pad(constant_val = const_1, mode = hidden_states_15_mode_0, pad = hidden_states_15_pad_0, x = var_185)[name = tensor("hidden_states_15")]; tensor var_193 = const()[name = tensor("op_193"), val = tensor([2, 2])]; tensor var_195 = const()[name = tensor("op_195"), val = tensor([1, 1])]; tensor input_57_pad_type_0 = const()[name = tensor("input_57_pad_type_0"), val = tensor("custom")]; tensor input_57_pad_0 = const()[name = tensor("input_57_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_57 = conv(bias = encoder_down_blocks_1_downsamplers_0_conv_bias, dilations = var_195, groups = var_15, pad = input_57_pad_0, pad_type = input_57_pad_type_0, strides = var_193, weight = encoder_down_blocks_1_downsamplers_0_conv_weight, x = hidden_states_15)[name = tensor("input_57")]; tensor reshape_32_shape_0 = const()[name = tensor("reshape_32_shape_0"), val = tensor([1, 32, 8, 256, 256])]; tensor reshape_32 = reshape(shape = reshape_32_shape_0, x = input_57)[name = tensor("reshape_32")]; tensor reduce_mean_24_axes_0 = const()[name = tensor("reduce_mean_24_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_24_keep_dims_0 = const()[name = tensor("reduce_mean_24_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_24 = reduce_mean(axes = reduce_mean_24_axes_0, keep_dims = reduce_mean_24_keep_dims_0, x = reshape_32)[name = tensor("reduce_mean_24")]; tensor sub_16 = sub(x = reshape_32, y = reduce_mean_24)[name = tensor("sub_16")]; tensor square_8 = square(x = sub_16)[name = tensor("square_8")]; tensor reduce_mean_26_axes_0 = const()[name = tensor("reduce_mean_26_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_26_keep_dims_0 = const()[name = tensor("reduce_mean_26_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_26 = reduce_mean(axes = reduce_mean_26_axes_0, keep_dims = reduce_mean_26_keep_dims_0, x = square_8)[name = tensor("reduce_mean_26")]; tensor add_16_y_0 = const()[name = tensor("add_16_y_0"), val = tensor(0x1.0c6f7ap-20)]; tensor add_16 = add(x = reduce_mean_26, y = add_16_y_0)[name = tensor("add_16")]; tensor sqrt_8 = sqrt(x = add_16)[name = tensor("sqrt_8")]; tensor real_div_8 = real_div(x = sub_16, y = sqrt_8)[name = tensor("real_div_8")]; tensor reshape_33_shape_0 = const()[name = tensor("reshape_33_shape_0"), val = tensor([1, 256, 256, 256])]; tensor reshape_33 = reshape(shape = reshape_33_shape_0, x = real_div_8)[name = tensor("reshape_33")]; tensor add_17_gamma_0 = const()[name = tensor("add_17_gamma_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136607680)))]; tensor add_17_beta_0 = const()[name = tensor("add_17_beta_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136608768)))]; tensor add_17_epsilon_0 = const()[name = tensor("add_17_epsilon_0"), val = tensor(0x1.4f8b58p-17)]; tensor add_17 = batch_norm(beta = add_17_beta_0, epsilon = add_17_epsilon_0, gamma = add_17_gamma_0, mean = add_11_mean_0, variance = add_11_variance_0, x = reshape_33)[name = tensor("add_17")]; tensor input_61 = silu(x = add_17)[name = tensor("input_61")]; tensor var_215 = const()[name = tensor("op_215"), val = tensor([1, 1])]; tensor var_217 = const()[name = tensor("op_217"), val = tensor([1, 1])]; tensor input_63_pad_type_0 = const()[name = tensor("input_63_pad_type_0"), val = tensor("custom")]; tensor input_63_pad_0 = const()[name = tensor("input_63_pad_0"), val = tensor([1, 1, 1, 1])]; tensor input_63 = conv(bias = encoder_down_blocks_2_resnets_0_conv1_bias, dilations = var_217, groups = var_15, pad = input_63_pad_0, pad_type = input_63_pad_type_0, strides = var_215, weight = encoder_down_blocks_2_resnets_0_conv1_weight, x = input_61)[name = tensor("input_63")]; tensor reshape_36_shape_0 = const()[name = tensor("reshape_36_shape_0"), val = tensor([1, 32, 16, 256, 256])]; tensor reshape_36 = reshape(shape = reshape_36_shape_0, x = input_63)[name = tensor("reshape_36")]; tensor reduce_mean_27_axes_0 = const()[name = tensor("reduce_mean_27_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_27_keep_dims_0 = const()[name = tensor("reduce_mean_27_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_27 = reduce_mean(axes = reduce_mean_27_axes_0, keep_dims = reduce_mean_27_keep_dims_0, x = reshape_36)[name = tensor("reduce_mean_27")]; tensor sub_18 = sub(x = reshape_36, y = reduce_mean_27)[name = tensor("sub_18")]; tensor square_9 = square(x = sub_18)[name = tensor("square_9")]; tensor reduce_mean_29_axes_0 = const()[name = tensor("reduce_mean_29_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_29_keep_dims_0 = const()[name = tensor("reduce_mean_29_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_29 = reduce_mean(axes = reduce_mean_29_axes_0, keep_dims = reduce_mean_29_keep_dims_0, x = square_9)[name = tensor("reduce_mean_29")]; tensor add_18_y_0 = const()[name = tensor("add_18_y_0"), val = tensor(0x1.0c6f7ap-20)]; tensor add_18 = add(x = reduce_mean_29, y = add_18_y_0)[name = tensor("add_18")]; tensor sqrt_9 = sqrt(x = add_18)[name = tensor("sqrt_9")]; tensor real_div_9 = real_div(x = sub_18, y = sqrt_9)[name = tensor("real_div_9")]; tensor reshape_37_shape_0 = const()[name = tensor("reshape_37_shape_0"), val = tensor([1, 512, 256, 256])]; tensor reshape_37 = reshape(shape = reshape_37_shape_0, x = real_div_9)[name = tensor("reshape_37")]; tensor add_19_mean_0 = const()[name = tensor("add_19_mean_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136609856)))]; tensor add_19_variance_0 = const()[name = tensor("add_19_variance_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136611968)))]; tensor add_19_gamma_0 = const()[name = tensor("add_19_gamma_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136614080)))]; tensor add_19_beta_0 = const()[name = tensor("add_19_beta_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136616192)))]; tensor add_19_epsilon_0 = const()[name = tensor("add_19_epsilon_0"), val = tensor(0x1.4f8b58p-17)]; tensor add_19 = batch_norm(beta = add_19_beta_0, epsilon = add_19_epsilon_0, gamma = add_19_gamma_0, mean = add_19_mean_0, variance = add_19_variance_0, x = reshape_37)[name = tensor("add_19")]; tensor input_67 = silu(x = add_19)[name = tensor("input_67")]; tensor var_227 = const()[name = tensor("op_227"), val = tensor([1, 1])]; tensor var_229 = const()[name = tensor("op_229"), val = tensor([1, 1])]; tensor hidden_states_17_pad_type_0 = const()[name = tensor("hidden_states_17_pad_type_0"), val = tensor("custom")]; tensor hidden_states_17_pad_0 = const()[name = tensor("hidden_states_17_pad_0"), val = tensor([1, 1, 1, 1])]; tensor hidden_states_17 = conv(bias = encoder_down_blocks_2_resnets_0_conv2_bias, dilations = var_229, groups = var_15, pad = hidden_states_17_pad_0, pad_type = hidden_states_17_pad_type_0, strides = var_227, weight = encoder_down_blocks_2_resnets_0_conv2_weight, x = input_67)[name = tensor("hidden_states_17")]; tensor var_234 = const()[name = tensor("op_234"), val = tensor([1, 1])]; tensor var_236 = const()[name = tensor("op_236"), val = tensor([1, 1])]; tensor input_tensor_pad_type_0 = const()[name = tensor("input_tensor_pad_type_0"), val = tensor("custom")]; tensor input_tensor_pad_0 = const()[name = tensor("input_tensor_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_tensor = conv(bias = encoder_down_blocks_2_resnets_0_conv_shortcut_bias, dilations = var_236, groups = var_15, pad = input_tensor_pad_0, pad_type = input_tensor_pad_type_0, strides = var_234, weight = encoder_down_blocks_2_resnets_0_conv_shortcut_weight, x = input_57)[name = tensor("input_tensor")]; tensor var_239 = add(x = input_tensor, y = hidden_states_17)[name = tensor("op_239")]; tensor reshape_40_shape_0 = const()[name = tensor("reshape_40_shape_0"), val = tensor([1, 32, 16, 256, 256])]; tensor reshape_40 = reshape(shape = reshape_40_shape_0, x = var_239)[name = tensor("reshape_40")]; tensor reduce_mean_30_axes_0 = const()[name = tensor("reduce_mean_30_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_30_keep_dims_0 = const()[name = tensor("reduce_mean_30_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_30 = reduce_mean(axes = reduce_mean_30_axes_0, keep_dims = reduce_mean_30_keep_dims_0, x = reshape_40)[name = tensor("reduce_mean_30")]; tensor sub_20 = sub(x = reshape_40, y = reduce_mean_30)[name = tensor("sub_20")]; tensor square_10 = square(x = sub_20)[name = tensor("square_10")]; tensor reduce_mean_32_axes_0 = const()[name = tensor("reduce_mean_32_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_32_keep_dims_0 = const()[name = tensor("reduce_mean_32_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_32 = reduce_mean(axes = reduce_mean_32_axes_0, keep_dims = reduce_mean_32_keep_dims_0, x = square_10)[name = tensor("reduce_mean_32")]; tensor add_20_y_0 = const()[name = tensor("add_20_y_0"), val = tensor(0x1.0c6f7ap-20)]; tensor add_20 = add(x = reduce_mean_32, y = add_20_y_0)[name = tensor("add_20")]; tensor sqrt_10 = sqrt(x = add_20)[name = tensor("sqrt_10")]; tensor real_div_10 = real_div(x = sub_20, y = sqrt_10)[name = tensor("real_div_10")]; tensor reshape_41_shape_0 = const()[name = tensor("reshape_41_shape_0"), val = tensor([1, 512, 256, 256])]; tensor reshape_41 = reshape(shape = reshape_41_shape_0, x = real_div_10)[name = tensor("reshape_41")]; tensor add_21_gamma_0 = const()[name = tensor("add_21_gamma_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136618304)))]; tensor add_21_beta_0 = const()[name = tensor("add_21_beta_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136620416)))]; tensor add_21_epsilon_0 = const()[name = tensor("add_21_epsilon_0"), val = tensor(0x1.4f8b58p-17)]; tensor add_21 = batch_norm(beta = add_21_beta_0, epsilon = add_21_epsilon_0, gamma = add_21_gamma_0, mean = add_19_mean_0, variance = add_19_variance_0, x = reshape_41)[name = tensor("add_21")]; tensor input_75 = silu(x = add_21)[name = tensor("input_75")]; tensor var_252 = const()[name = tensor("op_252"), val = tensor([1, 1])]; tensor var_254 = const()[name = tensor("op_254"), val = tensor([1, 1])]; tensor input_77_pad_type_0 = const()[name = tensor("input_77_pad_type_0"), val = tensor("custom")]; tensor input_77_pad_0 = const()[name = tensor("input_77_pad_0"), val = tensor([1, 1, 1, 1])]; tensor input_77 = conv(bias = encoder_down_blocks_2_resnets_1_conv1_bias, dilations = var_254, groups = var_15, pad = input_77_pad_0, pad_type = input_77_pad_type_0, strides = var_252, weight = encoder_down_blocks_2_resnets_1_conv1_weight, x = input_75)[name = tensor("input_77")]; tensor reshape_44_shape_0 = const()[name = tensor("reshape_44_shape_0"), val = tensor([1, 32, 16, 256, 256])]; tensor reshape_44 = reshape(shape = reshape_44_shape_0, x = input_77)[name = tensor("reshape_44")]; tensor reduce_mean_33_axes_0 = const()[name = tensor("reduce_mean_33_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_33_keep_dims_0 = const()[name = tensor("reduce_mean_33_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_33 = reduce_mean(axes = reduce_mean_33_axes_0, keep_dims = reduce_mean_33_keep_dims_0, x = reshape_44)[name = tensor("reduce_mean_33")]; tensor sub_22 = sub(x = reshape_44, y = reduce_mean_33)[name = tensor("sub_22")]; tensor square_11 = square(x = sub_22)[name = tensor("square_11")]; tensor reduce_mean_35_axes_0 = const()[name = tensor("reduce_mean_35_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_35_keep_dims_0 = const()[name = tensor("reduce_mean_35_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_35 = reduce_mean(axes = reduce_mean_35_axes_0, keep_dims = reduce_mean_35_keep_dims_0, x = square_11)[name = tensor("reduce_mean_35")]; tensor add_22_y_0 = const()[name = tensor("add_22_y_0"), val = tensor(0x1.0c6f7ap-20)]; tensor add_22 = add(x = reduce_mean_35, y = add_22_y_0)[name = tensor("add_22")]; tensor sqrt_11 = sqrt(x = add_22)[name = tensor("sqrt_11")]; tensor real_div_11 = real_div(x = sub_22, y = sqrt_11)[name = tensor("real_div_11")]; tensor reshape_45_shape_0 = const()[name = tensor("reshape_45_shape_0"), val = tensor([1, 512, 256, 256])]; tensor reshape_45 = reshape(shape = reshape_45_shape_0, x = real_div_11)[name = tensor("reshape_45")]; tensor add_23_gamma_0 = const()[name = tensor("add_23_gamma_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136622528)))]; tensor add_23_beta_0 = const()[name = tensor("add_23_beta_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136624640)))]; tensor add_23_epsilon_0 = const()[name = tensor("add_23_epsilon_0"), val = tensor(0x1.4f8b58p-17)]; tensor add_23 = batch_norm(beta = add_23_beta_0, epsilon = add_23_epsilon_0, gamma = add_23_gamma_0, mean = add_19_mean_0, variance = add_19_variance_0, x = reshape_45)[name = tensor("add_23")]; tensor input_81 = silu(x = add_23)[name = tensor("input_81")]; tensor var_264 = const()[name = tensor("op_264"), val = tensor([1, 1])]; tensor var_266 = const()[name = tensor("op_266"), val = tensor([1, 1])]; tensor hidden_states_19_pad_type_0 = const()[name = tensor("hidden_states_19_pad_type_0"), val = tensor("custom")]; tensor hidden_states_19_pad_0 = const()[name = tensor("hidden_states_19_pad_0"), val = tensor([1, 1, 1, 1])]; tensor hidden_states_19 = conv(bias = encoder_down_blocks_2_resnets_1_conv2_bias, dilations = var_266, groups = var_15, pad = hidden_states_19_pad_0, pad_type = hidden_states_19_pad_type_0, strides = var_264, weight = encoder_down_blocks_2_resnets_1_conv2_weight, x = input_81)[name = tensor("hidden_states_19")]; tensor var_269 = add(x = var_239, y = hidden_states_19)[name = tensor("op_269")]; tensor const_2 = const()[name = tensor("const_2"), val = tensor(0x0p+0)]; tensor hidden_states_23_pad_0 = const()[name = tensor("hidden_states_23_pad_0"), val = tensor([0, 0, 0, 0, 0, 1, 0, 1])]; tensor hidden_states_23_mode_0 = const()[name = tensor("hidden_states_23_mode_0"), val = tensor("constant")]; tensor hidden_states_23 = pad(constant_val = const_2, mode = hidden_states_23_mode_0, pad = hidden_states_23_pad_0, x = var_269)[name = tensor("hidden_states_23")]; tensor var_277 = const()[name = tensor("op_277"), val = tensor([2, 2])]; tensor var_279 = const()[name = tensor("op_279"), val = tensor([1, 1])]; tensor input_85_pad_type_0 = const()[name = tensor("input_85_pad_type_0"), val = tensor("custom")]; tensor input_85_pad_0 = const()[name = tensor("input_85_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_85 = conv(bias = encoder_down_blocks_2_downsamplers_0_conv_bias, dilations = var_279, groups = var_15, pad = input_85_pad_0, pad_type = input_85_pad_type_0, strides = var_277, weight = encoder_down_blocks_2_downsamplers_0_conv_weight, x = hidden_states_23)[name = tensor("input_85")]; tensor reshape_48_shape_0 = const()[name = tensor("reshape_48_shape_0"), val = tensor([1, 32, 16, 128, 128])]; tensor reshape_48 = reshape(shape = reshape_48_shape_0, x = input_85)[name = tensor("reshape_48")]; tensor reduce_mean_36_axes_0 = const()[name = tensor("reduce_mean_36_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_36_keep_dims_0 = const()[name = tensor("reduce_mean_36_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_36 = reduce_mean(axes = reduce_mean_36_axes_0, keep_dims = reduce_mean_36_keep_dims_0, x = reshape_48)[name = tensor("reduce_mean_36")]; tensor sub_24 = sub(x = reshape_48, y = reduce_mean_36)[name = tensor("sub_24")]; tensor square_12 = square(x = sub_24)[name = tensor("square_12")]; tensor reduce_mean_38_axes_0 = const()[name = tensor("reduce_mean_38_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_38_keep_dims_0 = const()[name = tensor("reduce_mean_38_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_38 = reduce_mean(axes = reduce_mean_38_axes_0, keep_dims = reduce_mean_38_keep_dims_0, x = square_12)[name = tensor("reduce_mean_38")]; tensor add_24_y_0 = const()[name = tensor("add_24_y_0"), val = tensor(0x1.0c6f7ap-20)]; tensor add_24 = add(x = reduce_mean_38, y = add_24_y_0)[name = tensor("add_24")]; tensor sqrt_12 = sqrt(x = add_24)[name = tensor("sqrt_12")]; tensor real_div_12 = real_div(x = sub_24, y = sqrt_12)[name = tensor("real_div_12")]; tensor reshape_49_shape_0 = const()[name = tensor("reshape_49_shape_0"), val = tensor([1, 512, 128, 128])]; tensor reshape_49 = reshape(shape = reshape_49_shape_0, x = real_div_12)[name = tensor("reshape_49")]; tensor add_25_gamma_0 = const()[name = tensor("add_25_gamma_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136626752)))]; tensor add_25_beta_0 = const()[name = tensor("add_25_beta_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136628864)))]; tensor add_25_epsilon_0 = const()[name = tensor("add_25_epsilon_0"), val = tensor(0x1.4f8b58p-17)]; tensor add_25 = batch_norm(beta = add_25_beta_0, epsilon = add_25_epsilon_0, gamma = add_25_gamma_0, mean = add_19_mean_0, variance = add_19_variance_0, x = reshape_49)[name = tensor("add_25")]; tensor input_89 = silu(x = add_25)[name = tensor("input_89")]; tensor var_296 = const()[name = tensor("op_296"), val = tensor([1, 1])]; tensor var_298 = const()[name = tensor("op_298"), val = tensor([1, 1])]; tensor input_91_pad_type_0 = const()[name = tensor("input_91_pad_type_0"), val = tensor("custom")]; tensor input_91_pad_0 = const()[name = tensor("input_91_pad_0"), val = tensor([1, 1, 1, 1])]; tensor input_91 = conv(bias = encoder_down_blocks_3_resnets_0_conv1_bias, dilations = var_298, groups = var_15, pad = input_91_pad_0, pad_type = input_91_pad_type_0, strides = var_296, weight = encoder_down_blocks_3_resnets_0_conv1_weight, x = input_89)[name = tensor("input_91")]; tensor reshape_52_shape_0 = const()[name = tensor("reshape_52_shape_0"), val = tensor([1, 32, 16, 128, 128])]; tensor reshape_52 = reshape(shape = reshape_52_shape_0, x = input_91)[name = tensor("reshape_52")]; tensor reduce_mean_39_axes_0 = const()[name = tensor("reduce_mean_39_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_39_keep_dims_0 = const()[name = tensor("reduce_mean_39_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_39 = reduce_mean(axes = reduce_mean_39_axes_0, keep_dims = reduce_mean_39_keep_dims_0, x = reshape_52)[name = tensor("reduce_mean_39")]; tensor sub_26 = sub(x = reshape_52, y = reduce_mean_39)[name = tensor("sub_26")]; tensor square_13 = square(x = sub_26)[name = tensor("square_13")]; tensor reduce_mean_41_axes_0 = const()[name = tensor("reduce_mean_41_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_41_keep_dims_0 = const()[name = tensor("reduce_mean_41_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_41 = reduce_mean(axes = reduce_mean_41_axes_0, keep_dims = reduce_mean_41_keep_dims_0, x = square_13)[name = tensor("reduce_mean_41")]; tensor add_26_y_0 = const()[name = tensor("add_26_y_0"), val = tensor(0x1.0c6f7ap-20)]; tensor add_26 = add(x = reduce_mean_41, y = add_26_y_0)[name = tensor("add_26")]; tensor sqrt_13 = sqrt(x = add_26)[name = tensor("sqrt_13")]; tensor real_div_13 = real_div(x = sub_26, y = sqrt_13)[name = tensor("real_div_13")]; tensor reshape_53_shape_0 = const()[name = tensor("reshape_53_shape_0"), val = tensor([1, 512, 128, 128])]; tensor reshape_53 = reshape(shape = reshape_53_shape_0, x = real_div_13)[name = tensor("reshape_53")]; tensor add_27_gamma_0 = const()[name = tensor("add_27_gamma_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136630976)))]; tensor add_27_beta_0 = const()[name = tensor("add_27_beta_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136633088)))]; tensor add_27_epsilon_0 = const()[name = tensor("add_27_epsilon_0"), val = tensor(0x1.4f8b58p-17)]; tensor add_27 = batch_norm(beta = add_27_beta_0, epsilon = add_27_epsilon_0, gamma = add_27_gamma_0, mean = add_19_mean_0, variance = add_19_variance_0, x = reshape_53)[name = tensor("add_27")]; tensor input_95 = silu(x = add_27)[name = tensor("input_95")]; tensor var_308 = const()[name = tensor("op_308"), val = tensor([1, 1])]; tensor var_310 = const()[name = tensor("op_310"), val = tensor([1, 1])]; tensor hidden_states_25_pad_type_0 = const()[name = tensor("hidden_states_25_pad_type_0"), val = tensor("custom")]; tensor hidden_states_25_pad_0 = const()[name = tensor("hidden_states_25_pad_0"), val = tensor([1, 1, 1, 1])]; tensor hidden_states_25 = conv(bias = encoder_down_blocks_3_resnets_0_conv2_bias, dilations = var_310, groups = var_15, pad = hidden_states_25_pad_0, pad_type = hidden_states_25_pad_type_0, strides = var_308, weight = encoder_down_blocks_3_resnets_0_conv2_weight, x = input_95)[name = tensor("hidden_states_25")]; tensor var_313 = add(x = input_85, y = hidden_states_25)[name = tensor("op_313")]; tensor reshape_56_shape_0 = const()[name = tensor("reshape_56_shape_0"), val = tensor([1, 32, 16, 128, 128])]; tensor reshape_56 = reshape(shape = reshape_56_shape_0, x = var_313)[name = tensor("reshape_56")]; tensor reduce_mean_42_axes_0 = const()[name = tensor("reduce_mean_42_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_42_keep_dims_0 = const()[name = tensor("reduce_mean_42_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_42 = reduce_mean(axes = reduce_mean_42_axes_0, keep_dims = reduce_mean_42_keep_dims_0, x = reshape_56)[name = tensor("reduce_mean_42")]; tensor sub_28 = sub(x = reshape_56, y = reduce_mean_42)[name = tensor("sub_28")]; tensor square_14 = square(x = sub_28)[name = tensor("square_14")]; tensor reduce_mean_44_axes_0 = const()[name = tensor("reduce_mean_44_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_44_keep_dims_0 = const()[name = tensor("reduce_mean_44_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_44 = reduce_mean(axes = reduce_mean_44_axes_0, keep_dims = reduce_mean_44_keep_dims_0, x = square_14)[name = tensor("reduce_mean_44")]; tensor add_28_y_0 = const()[name = tensor("add_28_y_0"), val = tensor(0x1.0c6f7ap-20)]; tensor add_28 = add(x = reduce_mean_44, y = add_28_y_0)[name = tensor("add_28")]; tensor sqrt_14 = sqrt(x = add_28)[name = tensor("sqrt_14")]; tensor real_div_14 = real_div(x = sub_28, y = sqrt_14)[name = tensor("real_div_14")]; tensor reshape_57_shape_0 = const()[name = tensor("reshape_57_shape_0"), val = tensor([1, 512, 128, 128])]; tensor reshape_57 = reshape(shape = reshape_57_shape_0, x = real_div_14)[name = tensor("reshape_57")]; tensor add_29_gamma_0 = const()[name = tensor("add_29_gamma_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136635200)))]; tensor add_29_beta_0 = const()[name = tensor("add_29_beta_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136637312)))]; tensor add_29_epsilon_0 = const()[name = tensor("add_29_epsilon_0"), val = tensor(0x1.4f8b58p-17)]; tensor add_29 = batch_norm(beta = add_29_beta_0, epsilon = add_29_epsilon_0, gamma = add_29_gamma_0, mean = add_19_mean_0, variance = add_19_variance_0, x = reshape_57)[name = tensor("add_29")]; tensor input_103 = silu(x = add_29)[name = tensor("input_103")]; tensor var_326 = const()[name = tensor("op_326"), val = tensor([1, 1])]; tensor var_328 = const()[name = tensor("op_328"), val = tensor([1, 1])]; tensor input_105_pad_type_0 = const()[name = tensor("input_105_pad_type_0"), val = tensor("custom")]; tensor input_105_pad_0 = const()[name = tensor("input_105_pad_0"), val = tensor([1, 1, 1, 1])]; tensor input_105 = conv(bias = encoder_down_blocks_3_resnets_1_conv1_bias, dilations = var_328, groups = var_15, pad = input_105_pad_0, pad_type = input_105_pad_type_0, strides = var_326, weight = encoder_down_blocks_3_resnets_1_conv1_weight, x = input_103)[name = tensor("input_105")]; tensor reshape_60_shape_0 = const()[name = tensor("reshape_60_shape_0"), val = tensor([1, 32, 16, 128, 128])]; tensor reshape_60 = reshape(shape = reshape_60_shape_0, x = input_105)[name = tensor("reshape_60")]; tensor reduce_mean_45_axes_0 = const()[name = tensor("reduce_mean_45_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_45_keep_dims_0 = const()[name = tensor("reduce_mean_45_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_45 = reduce_mean(axes = reduce_mean_45_axes_0, keep_dims = reduce_mean_45_keep_dims_0, x = reshape_60)[name = tensor("reduce_mean_45")]; tensor sub_30 = sub(x = reshape_60, y = reduce_mean_45)[name = tensor("sub_30")]; tensor square_15 = square(x = sub_30)[name = tensor("square_15")]; tensor reduce_mean_47_axes_0 = const()[name = tensor("reduce_mean_47_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_47_keep_dims_0 = const()[name = tensor("reduce_mean_47_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_47 = reduce_mean(axes = reduce_mean_47_axes_0, keep_dims = reduce_mean_47_keep_dims_0, x = square_15)[name = tensor("reduce_mean_47")]; tensor add_30_y_0 = const()[name = tensor("add_30_y_0"), val = tensor(0x1.0c6f7ap-20)]; tensor add_30 = add(x = reduce_mean_47, y = add_30_y_0)[name = tensor("add_30")]; tensor sqrt_15 = sqrt(x = add_30)[name = tensor("sqrt_15")]; tensor real_div_15 = real_div(x = sub_30, y = sqrt_15)[name = tensor("real_div_15")]; tensor reshape_61_shape_0 = const()[name = tensor("reshape_61_shape_0"), val = tensor([1, 512, 128, 128])]; tensor reshape_61 = reshape(shape = reshape_61_shape_0, x = real_div_15)[name = tensor("reshape_61")]; tensor add_31_gamma_0 = const()[name = tensor("add_31_gamma_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136639424)))]; tensor add_31_beta_0 = const()[name = tensor("add_31_beta_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136641536)))]; tensor add_31_epsilon_0 = const()[name = tensor("add_31_epsilon_0"), val = tensor(0x1.4f8b58p-17)]; tensor add_31 = batch_norm(beta = add_31_beta_0, epsilon = add_31_epsilon_0, gamma = add_31_gamma_0, mean = add_19_mean_0, variance = add_19_variance_0, x = reshape_61)[name = tensor("add_31")]; tensor input_109 = silu(x = add_31)[name = tensor("input_109")]; tensor var_338 = const()[name = tensor("op_338"), val = tensor([1, 1])]; tensor var_340 = const()[name = tensor("op_340"), val = tensor([1, 1])]; tensor hidden_states_27_pad_type_0 = const()[name = tensor("hidden_states_27_pad_type_0"), val = tensor("custom")]; tensor hidden_states_27_pad_0 = const()[name = tensor("hidden_states_27_pad_0"), val = tensor([1, 1, 1, 1])]; tensor hidden_states_27 = conv(bias = encoder_down_blocks_3_resnets_1_conv2_bias, dilations = var_340, groups = var_15, pad = hidden_states_27_pad_0, pad_type = hidden_states_27_pad_type_0, strides = var_338, weight = encoder_down_blocks_3_resnets_1_conv2_weight, x = input_109)[name = tensor("hidden_states_27")]; tensor var_343 = add(x = var_313, y = hidden_states_27)[name = tensor("op_343")]; tensor reshape_64_shape_0 = const()[name = tensor("reshape_64_shape_0"), val = tensor([1, 32, 16, 128, 128])]; tensor reshape_64 = reshape(shape = reshape_64_shape_0, x = var_343)[name = tensor("reshape_64")]; tensor reduce_mean_48_axes_0 = const()[name = tensor("reduce_mean_48_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_48_keep_dims_0 = const()[name = tensor("reduce_mean_48_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_48 = reduce_mean(axes = reduce_mean_48_axes_0, keep_dims = reduce_mean_48_keep_dims_0, x = reshape_64)[name = tensor("reduce_mean_48")]; tensor sub_32 = sub(x = reshape_64, y = reduce_mean_48)[name = tensor("sub_32")]; tensor square_16 = square(x = sub_32)[name = tensor("square_16")]; tensor reduce_mean_50_axes_0 = const()[name = tensor("reduce_mean_50_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_50_keep_dims_0 = const()[name = tensor("reduce_mean_50_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_50 = reduce_mean(axes = reduce_mean_50_axes_0, keep_dims = reduce_mean_50_keep_dims_0, x = square_16)[name = tensor("reduce_mean_50")]; tensor add_32_y_0 = const()[name = tensor("add_32_y_0"), val = tensor(0x1.0c6f7ap-20)]; tensor add_32 = add(x = reduce_mean_50, y = add_32_y_0)[name = tensor("add_32")]; tensor sqrt_16 = sqrt(x = add_32)[name = tensor("sqrt_16")]; tensor real_div_16 = real_div(x = sub_32, y = sqrt_16)[name = tensor("real_div_16")]; tensor reshape_65_shape_0 = const()[name = tensor("reshape_65_shape_0"), val = tensor([1, 512, 128, 128])]; tensor reshape_65 = reshape(shape = reshape_65_shape_0, x = real_div_16)[name = tensor("reshape_65")]; tensor add_33_gamma_0 = const()[name = tensor("add_33_gamma_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136643648)))]; tensor add_33_beta_0 = const()[name = tensor("add_33_beta_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136645760)))]; tensor add_33_epsilon_0 = const()[name = tensor("add_33_epsilon_0"), val = tensor(0x1.4f8b58p-17)]; tensor add_33 = batch_norm(beta = add_33_beta_0, epsilon = add_33_epsilon_0, gamma = add_33_gamma_0, mean = add_19_mean_0, variance = add_19_variance_0, x = reshape_65)[name = tensor("add_33")]; tensor input_117 = silu(x = add_33)[name = tensor("input_117")]; tensor var_362 = const()[name = tensor("op_362"), val = tensor([1, 1])]; tensor var_364 = const()[name = tensor("op_364"), val = tensor([1, 1])]; tensor input_119_pad_type_0 = const()[name = tensor("input_119_pad_type_0"), val = tensor("custom")]; tensor input_119_pad_0 = const()[name = tensor("input_119_pad_0"), val = tensor([1, 1, 1, 1])]; tensor input_119 = conv(bias = encoder_mid_block_resnets_0_conv1_bias, dilations = var_364, groups = var_15, pad = input_119_pad_0, pad_type = input_119_pad_type_0, strides = var_362, weight = encoder_mid_block_resnets_0_conv1_weight, x = input_117)[name = tensor("input_119")]; tensor reshape_68_shape_0 = const()[name = tensor("reshape_68_shape_0"), val = tensor([1, 32, 16, 128, 128])]; tensor reshape_68 = reshape(shape = reshape_68_shape_0, x = input_119)[name = tensor("reshape_68")]; tensor reduce_mean_51_axes_0 = const()[name = tensor("reduce_mean_51_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_51_keep_dims_0 = const()[name = tensor("reduce_mean_51_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_51 = reduce_mean(axes = reduce_mean_51_axes_0, keep_dims = reduce_mean_51_keep_dims_0, x = reshape_68)[name = tensor("reduce_mean_51")]; tensor sub_34 = sub(x = reshape_68, y = reduce_mean_51)[name = tensor("sub_34")]; tensor square_17 = square(x = sub_34)[name = tensor("square_17")]; tensor reduce_mean_53_axes_0 = const()[name = tensor("reduce_mean_53_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_53_keep_dims_0 = const()[name = tensor("reduce_mean_53_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_53 = reduce_mean(axes = reduce_mean_53_axes_0, keep_dims = reduce_mean_53_keep_dims_0, x = square_17)[name = tensor("reduce_mean_53")]; tensor add_34_y_0 = const()[name = tensor("add_34_y_0"), val = tensor(0x1.0c6f7ap-20)]; tensor add_34 = add(x = reduce_mean_53, y = add_34_y_0)[name = tensor("add_34")]; tensor sqrt_17 = sqrt(x = add_34)[name = tensor("sqrt_17")]; tensor real_div_17 = real_div(x = sub_34, y = sqrt_17)[name = tensor("real_div_17")]; tensor reshape_69_shape_0 = const()[name = tensor("reshape_69_shape_0"), val = tensor([1, 512, 128, 128])]; tensor reshape_69 = reshape(shape = reshape_69_shape_0, x = real_div_17)[name = tensor("reshape_69")]; tensor add_35_gamma_0 = const()[name = tensor("add_35_gamma_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136647872)))]; tensor add_35_beta_0 = const()[name = tensor("add_35_beta_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136649984)))]; tensor add_35_epsilon_0 = const()[name = tensor("add_35_epsilon_0"), val = tensor(0x1.4f8b58p-17)]; tensor add_35 = batch_norm(beta = add_35_beta_0, epsilon = add_35_epsilon_0, gamma = add_35_gamma_0, mean = add_19_mean_0, variance = add_19_variance_0, x = reshape_69)[name = tensor("add_35")]; tensor input_123 = silu(x = add_35)[name = tensor("input_123")]; tensor var_374 = const()[name = tensor("op_374"), val = tensor([1, 1])]; tensor var_376 = const()[name = tensor("op_376"), val = tensor([1, 1])]; tensor hidden_states_29_pad_type_0 = const()[name = tensor("hidden_states_29_pad_type_0"), val = tensor("custom")]; tensor hidden_states_29_pad_0 = const()[name = tensor("hidden_states_29_pad_0"), val = tensor([1, 1, 1, 1])]; tensor hidden_states_29 = conv(bias = encoder_mid_block_resnets_0_conv2_bias, dilations = var_376, groups = var_15, pad = hidden_states_29_pad_0, pad_type = hidden_states_29_pad_type_0, strides = var_374, weight = encoder_mid_block_resnets_0_conv2_weight, x = input_123)[name = tensor("hidden_states_29")]; tensor var_379 = add(x = var_343, y = hidden_states_29)[name = tensor("op_379")]; tensor reshape_72_shape_0 = const()[name = tensor("reshape_72_shape_0"), val = tensor([1, 32, 16, 16384])]; tensor reshape_72 = reshape(shape = reshape_72_shape_0, x = var_379)[name = tensor("reshape_72")]; tensor reduce_mean_54_axes_0 = const()[name = tensor("reduce_mean_54_axes_0"), val = tensor([2, 3])]; tensor reduce_mean_54_keep_dims_0 = const()[name = tensor("reduce_mean_54_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_54 = reduce_mean(axes = reduce_mean_54_axes_0, keep_dims = reduce_mean_54_keep_dims_0, x = reshape_72)[name = tensor("reduce_mean_54")]; tensor sub_36 = sub(x = reshape_72, y = reduce_mean_54)[name = tensor("sub_36")]; tensor square_18 = square(x = sub_36)[name = tensor("square_18")]; tensor reduce_mean_56_axes_0 = const()[name = tensor("reduce_mean_56_axes_0"), val = tensor([2, 3])]; tensor reduce_mean_56_keep_dims_0 = const()[name = tensor("reduce_mean_56_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_56 = reduce_mean(axes = reduce_mean_56_axes_0, keep_dims = reduce_mean_56_keep_dims_0, x = square_18)[name = tensor("reduce_mean_56")]; tensor add_36_y_0 = const()[name = tensor("add_36_y_0"), val = tensor(0x1.0c6f7ap-20)]; tensor add_36 = add(x = reduce_mean_56, y = add_36_y_0)[name = tensor("add_36")]; tensor sqrt_18 = sqrt(x = add_36)[name = tensor("sqrt_18")]; tensor real_div_18 = real_div(x = sub_36, y = sqrt_18)[name = tensor("real_div_18")]; tensor reshape_73_shape_0 = const()[name = tensor("reshape_73_shape_0"), val = tensor([1, 512, 16384])]; tensor reshape_73 = reshape(shape = reshape_73_shape_0, x = real_div_18)[name = tensor("reshape_73")]; tensor reshape_74 = const()[name = tensor("reshape_74"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136652096)))]; tensor mul_18 = mul(x = reshape_73, y = reshape_74)[name = tensor("mul_18")]; tensor reshape_75 = const()[name = tensor("reshape_75"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136654208)))]; tensor add_37 = add(x = mul_18, y = reshape_75)[name = tensor("add_37")]; tensor input_129_perm_0 = const()[name = tensor("input_129_perm_0"), val = tensor([0, 2, 1])]; tensor transpose_11 = transpose(perm = input_129_perm_0, x = add_37)[name = tensor("transpose_11")]; tensor linear_0 = linear(bias = encoder_mid_block_attentions_0_to_q_bias, weight = encoder_mid_block_attentions_0_to_q_weight, x = transpose_11)[name = tensor("linear_0")]; tensor linear_1 = linear(bias = encoder_mid_block_attentions_0_to_k_bias, weight = encoder_mid_block_attentions_0_to_k_weight, x = transpose_11)[name = tensor("linear_1")]; tensor linear_2 = linear(bias = encoder_mid_block_attentions_0_to_v_bias, weight = encoder_mid_block_attentions_0_to_v_weight, x = transpose_11)[name = tensor("linear_2")]; tensor var_420 = const()[name = tensor("op_420"), val = tensor([1, -1, 1, 512])]; tensor var_421 = reshape(shape = var_420, x = linear_0)[name = tensor("op_421")]; tensor var_423 = const()[name = tensor("op_423"), val = tensor([1, -1, 1, 512])]; tensor var_424 = reshape(shape = var_423, x = linear_1)[name = tensor("op_424")]; tensor var_426 = const()[name = tensor("op_426"), val = tensor([1, -1, 1, 512])]; tensor var_427 = reshape(shape = var_426, x = linear_2)[name = tensor("op_427")]; tensor value_perm_0 = const()[name = tensor("value_perm_0"), val = tensor([0, 2, 1, 3])]; tensor mul_19_y_0 = const()[name = tensor("mul_19_y_0"), val = tensor(0x1.6a09e6p-5)]; tensor mul_19 = mul(x = var_421, y = mul_19_y_0)[name = tensor("mul_19")]; tensor matmul_0_transpose_y_0 = const()[name = tensor("matmul_0_transpose_y_0"), val = tensor(true)]; tensor matmul_0_transpose_x_0 = const()[name = tensor("matmul_0_transpose_x_0"), val = tensor(false)]; tensor transpose_4_perm_0 = const()[name = tensor("transpose_4_perm_0"), val = tensor([0, 2, -3, -1])]; tensor transpose_5_perm_0 = const()[name = tensor("transpose_5_perm_0"), val = tensor([0, 2, -3, -1])]; tensor transpose_8 = transpose(perm = transpose_5_perm_0, x = var_424)[name = tensor("transpose_8")]; tensor transpose_9 = transpose(perm = transpose_4_perm_0, x = mul_19)[name = tensor("transpose_9")]; tensor matmul_0 = matmul(transpose_x = matmul_0_transpose_x_0, transpose_y = matmul_0_transpose_y_0, x = transpose_9, y = transpose_8)[name = tensor("matmul_0")]; tensor softmax_0_axis_0 = const()[name = tensor("softmax_0_axis_0"), val = tensor(-1)]; tensor softmax_0 = softmax(axis = softmax_0_axis_0, x = matmul_0)[name = tensor("softmax_0")]; tensor hidden_states_35_transpose_x_0 = const()[name = tensor("hidden_states_35_transpose_x_0"), val = tensor(false)]; tensor hidden_states_35_transpose_y_0 = const()[name = tensor("hidden_states_35_transpose_y_0"), val = tensor(false)]; tensor transpose_10 = transpose(perm = value_perm_0, x = var_427)[name = tensor("transpose_10")]; tensor hidden_states_35 = matmul(transpose_x = hidden_states_35_transpose_x_0, transpose_y = hidden_states_35_transpose_y_0, x = softmax_0, y = transpose_10)[name = tensor("hidden_states_35")]; tensor var_430_perm_0 = const()[name = tensor("op_430_perm_0"), val = tensor([0, 2, 1, 3])]; tensor var_434 = const()[name = tensor("op_434"), val = tensor([1, -1, 512])]; tensor transpose_7 = transpose(perm = var_430_perm_0, x = hidden_states_35)[name = tensor("transpose_7")]; tensor hidden_states_37 = reshape(shape = var_434, x = transpose_7)[name = tensor("hidden_states_37")]; tensor linear_3 = linear(bias = encoder_mid_block_attentions_0_to_out_0_bias, weight = encoder_mid_block_attentions_0_to_out_0_weight, x = hidden_states_37)[name = tensor("linear_3")]; tensor var_441_perm_0 = const()[name = tensor("op_441_perm_0"), val = tensor([0, -1, -2])]; tensor var_442 = const()[name = tensor("op_442"), val = tensor([1, 512, 128, 128])]; tensor transpose_6 = transpose(perm = var_441_perm_0, x = linear_3)[name = tensor("transpose_6")]; tensor hidden_states_41 = reshape(shape = var_442, x = transpose_6)[name = tensor("hidden_states_41")]; tensor hidden_states_43 = add(x = hidden_states_41, y = var_379)[name = tensor("hidden_states_43")]; tensor reshape_76_shape_0 = const()[name = tensor("reshape_76_shape_0"), val = tensor([1, 32, 16, 128, 128])]; tensor reshape_76 = reshape(shape = reshape_76_shape_0, x = hidden_states_43)[name = tensor("reshape_76")]; tensor reduce_mean_57_axes_0 = const()[name = tensor("reduce_mean_57_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_57_keep_dims_0 = const()[name = tensor("reduce_mean_57_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_57 = reduce_mean(axes = reduce_mean_57_axes_0, keep_dims = reduce_mean_57_keep_dims_0, x = reshape_76)[name = tensor("reduce_mean_57")]; tensor sub_38 = sub(x = reshape_76, y = reduce_mean_57)[name = tensor("sub_38")]; tensor square_19 = square(x = sub_38)[name = tensor("square_19")]; tensor reduce_mean_59_axes_0 = const()[name = tensor("reduce_mean_59_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_59_keep_dims_0 = const()[name = tensor("reduce_mean_59_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_59 = reduce_mean(axes = reduce_mean_59_axes_0, keep_dims = reduce_mean_59_keep_dims_0, x = square_19)[name = tensor("reduce_mean_59")]; tensor add_38_y_0 = const()[name = tensor("add_38_y_0"), val = tensor(0x1.0c6f7ap-20)]; tensor add_38 = add(x = reduce_mean_59, y = add_38_y_0)[name = tensor("add_38")]; tensor sqrt_19 = sqrt(x = add_38)[name = tensor("sqrt_19")]; tensor real_div_19 = real_div(x = sub_38, y = sqrt_19)[name = tensor("real_div_19")]; tensor reshape_77_shape_0 = const()[name = tensor("reshape_77_shape_0"), val = tensor([1, 512, 128, 128])]; tensor reshape_77 = reshape(shape = reshape_77_shape_0, x = real_div_19)[name = tensor("reshape_77")]; tensor add_39_gamma_0 = const()[name = tensor("add_39_gamma_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136656320)))]; tensor add_39_beta_0 = const()[name = tensor("add_39_beta_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136658432)))]; tensor add_39_epsilon_0 = const()[name = tensor("add_39_epsilon_0"), val = tensor(0x1.4f8b58p-17)]; tensor add_39 = batch_norm(beta = add_39_beta_0, epsilon = add_39_epsilon_0, gamma = add_39_gamma_0, mean = add_19_mean_0, variance = add_19_variance_0, x = reshape_77)[name = tensor("add_39")]; tensor input_139 = silu(x = add_39)[name = tensor("input_139")]; tensor var_457 = const()[name = tensor("op_457"), val = tensor([1, 1])]; tensor var_459 = const()[name = tensor("op_459"), val = tensor([1, 1])]; tensor input_141_pad_type_0 = const()[name = tensor("input_141_pad_type_0"), val = tensor("custom")]; tensor input_141_pad_0 = const()[name = tensor("input_141_pad_0"), val = tensor([1, 1, 1, 1])]; tensor input_141 = conv(bias = encoder_mid_block_resnets_1_conv1_bias, dilations = var_459, groups = var_15, pad = input_141_pad_0, pad_type = input_141_pad_type_0, strides = var_457, weight = encoder_mid_block_resnets_1_conv1_weight, x = input_139)[name = tensor("input_141")]; tensor reshape_80_shape_0 = const()[name = tensor("reshape_80_shape_0"), val = tensor([1, 32, 16, 128, 128])]; tensor reshape_80 = reshape(shape = reshape_80_shape_0, x = input_141)[name = tensor("reshape_80")]; tensor reduce_mean_60_axes_0 = const()[name = tensor("reduce_mean_60_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_60_keep_dims_0 = const()[name = tensor("reduce_mean_60_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_60 = reduce_mean(axes = reduce_mean_60_axes_0, keep_dims = reduce_mean_60_keep_dims_0, x = reshape_80)[name = tensor("reduce_mean_60")]; tensor sub_40 = sub(x = reshape_80, y = reduce_mean_60)[name = tensor("sub_40")]; tensor square_20 = square(x = sub_40)[name = tensor("square_20")]; tensor reduce_mean_62_axes_0 = const()[name = tensor("reduce_mean_62_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_62_keep_dims_0 = const()[name = tensor("reduce_mean_62_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_62 = reduce_mean(axes = reduce_mean_62_axes_0, keep_dims = reduce_mean_62_keep_dims_0, x = square_20)[name = tensor("reduce_mean_62")]; tensor add_40_y_0 = const()[name = tensor("add_40_y_0"), val = tensor(0x1.0c6f7ap-20)]; tensor add_40 = add(x = reduce_mean_62, y = add_40_y_0)[name = tensor("add_40")]; tensor sqrt_20 = sqrt(x = add_40)[name = tensor("sqrt_20")]; tensor real_div_20 = real_div(x = sub_40, y = sqrt_20)[name = tensor("real_div_20")]; tensor reshape_81_shape_0 = const()[name = tensor("reshape_81_shape_0"), val = tensor([1, 512, 128, 128])]; tensor reshape_81 = reshape(shape = reshape_81_shape_0, x = real_div_20)[name = tensor("reshape_81")]; tensor add_41_gamma_0 = const()[name = tensor("add_41_gamma_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136660544)))]; tensor add_41_beta_0 = const()[name = tensor("add_41_beta_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136662656)))]; tensor add_41_epsilon_0 = const()[name = tensor("add_41_epsilon_0"), val = tensor(0x1.4f8b58p-17)]; tensor add_41 = batch_norm(beta = add_41_beta_0, epsilon = add_41_epsilon_0, gamma = add_41_gamma_0, mean = add_19_mean_0, variance = add_19_variance_0, x = reshape_81)[name = tensor("add_41")]; tensor input_145 = silu(x = add_41)[name = tensor("input_145")]; tensor var_469 = const()[name = tensor("op_469"), val = tensor([1, 1])]; tensor var_471 = const()[name = tensor("op_471"), val = tensor([1, 1])]; tensor hidden_states_pad_type_0 = const()[name = tensor("hidden_states_pad_type_0"), val = tensor("custom")]; tensor hidden_states_pad_0 = const()[name = tensor("hidden_states_pad_0"), val = tensor([1, 1, 1, 1])]; tensor hidden_states = conv(bias = encoder_mid_block_resnets_1_conv2_bias, dilations = var_471, groups = var_15, pad = hidden_states_pad_0, pad_type = hidden_states_pad_type_0, strides = var_469, weight = encoder_mid_block_resnets_1_conv2_weight, x = input_145)[name = tensor("hidden_states")]; tensor var_474 = add(x = hidden_states_43, y = hidden_states)[name = tensor("op_474")]; tensor reshape_84_shape_0 = const()[name = tensor("reshape_84_shape_0"), val = tensor([1, 32, 16, 128, 128])]; tensor reshape_84 = reshape(shape = reshape_84_shape_0, x = var_474)[name = tensor("reshape_84")]; tensor reduce_mean_63_axes_0 = const()[name = tensor("reduce_mean_63_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_63_keep_dims_0 = const()[name = tensor("reduce_mean_63_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_63 = reduce_mean(axes = reduce_mean_63_axes_0, keep_dims = reduce_mean_63_keep_dims_0, x = reshape_84)[name = tensor("reduce_mean_63")]; tensor sub_42 = sub(x = reshape_84, y = reduce_mean_63)[name = tensor("sub_42")]; tensor square_21 = square(x = sub_42)[name = tensor("square_21")]; tensor reduce_mean_65_axes_0 = const()[name = tensor("reduce_mean_65_axes_0"), val = tensor([2, 3, 4])]; tensor reduce_mean_65_keep_dims_0 = const()[name = tensor("reduce_mean_65_keep_dims_0"), val = tensor(true)]; tensor reduce_mean_65 = reduce_mean(axes = reduce_mean_65_axes_0, keep_dims = reduce_mean_65_keep_dims_0, x = square_21)[name = tensor("reduce_mean_65")]; tensor add_42_y_0 = const()[name = tensor("add_42_y_0"), val = tensor(0x1.0c6f7ap-20)]; tensor add_42 = add(x = reduce_mean_65, y = add_42_y_0)[name = tensor("add_42")]; tensor sqrt_21 = sqrt(x = add_42)[name = tensor("sqrt_21")]; tensor real_div_21 = real_div(x = sub_42, y = sqrt_21)[name = tensor("real_div_21")]; tensor reshape_85_shape_0 = const()[name = tensor("reshape_85_shape_0"), val = tensor([1, 512, 128, 128])]; tensor reshape_85 = reshape(shape = reshape_85_shape_0, x = real_div_21)[name = tensor("reshape_85")]; tensor add_43_gamma_0 = const()[name = tensor("add_43_gamma_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136664768)))]; tensor add_43_beta_0 = const()[name = tensor("add_43_beta_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136666880)))]; tensor add_43_epsilon_0 = const()[name = tensor("add_43_epsilon_0"), val = tensor(0x1.4f8b58p-17)]; tensor add_43 = batch_norm(beta = add_43_beta_0, epsilon = add_43_epsilon_0, gamma = add_43_gamma_0, mean = add_19_mean_0, variance = add_19_variance_0, x = reshape_85)[name = tensor("add_43")]; tensor input_153 = silu(x = add_43)[name = tensor("input_153")]; tensor var_483 = const()[name = tensor("op_483"), val = tensor([1, 1])]; tensor var_485 = const()[name = tensor("op_485"), val = tensor([1, 1])]; tensor input_pad_type_0 = const()[name = tensor("input_pad_type_0"), val = tensor("custom")]; tensor input_pad_0 = const()[name = tensor("input_pad_0"), val = tensor([1, 1, 1, 1])]; tensor input = conv(bias = encoder_conv_out_bias, dilations = var_485, groups = var_15, pad = input_pad_0, pad_type = input_pad_type_0, strides = var_483, weight = encoder_conv_out_weight, x = input_153)[name = tensor("input")]; tensor var_491 = const()[name = tensor("op_491"), val = tensor(1)]; tensor var_494 = const()[name = tensor("op_494"), val = tensor([1, 1])]; tensor var_496 = const()[name = tensor("op_496"), val = tensor([1, 1])]; tensor var_498_pad_type_0 = const()[name = tensor("op_498_pad_type_0"), val = tensor("custom")]; tensor var_498_pad_0 = const()[name = tensor("op_498_pad_0"), val = tensor([0, 0, 0, 0])]; tensor latent = conv(bias = quant_conv_bias, dilations = var_496, groups = var_491, pad = var_498_pad_0, pad_type = var_498_pad_type_0, strides = var_494, weight = quant_conv_weight, x = input)[name = tensor("op_498")]; } -> (latent); }