dianecy's picture
Upload folder using huggingface_hub
fce6bfe verified
import os
import random
import numpy as np
from PIL import Image
from loguru import logger
import sys
import inspect
import torch
from torch import nn
import torch.distributed as dist
def init_random_seed(seed=None, device='cuda', rank=0, world_size=1):
"""Initialize random seed."""
if seed is not None:
return seed
# Make sure all ranks share the same random seed to prevent
# some potential bugs. Please refer to
# https://github.com/open-mmlab/mmdetection/issues/6339
seed = np.random.randint(2**31)
if world_size == 1:
return seed
if rank == 0:
random_num = torch.tensor(seed, dtype=torch.int32, device=device)
else:
random_num = torch.tensor(0, dtype=torch.int32, device=device)
dist.broadcast(random_num, src=0)
return random_num.item()
def set_random_seed(seed, deterministic=False):
"""Set random seed."""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if deterministic:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
@torch.no_grad()
def concat_all_gather(tensor):
"""
Performs all_gather operation on the provided tensors.
*** Warning ***: torch.distributed.all_gather has no gradient.
"""
tensor = tensor.contiguous()
tensors_gather = [
torch.ones_like(tensor)
for _ in range(torch.distributed.get_world_size())
]
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
output = torch.cat(tensors_gather, dim=0)
return output
def worker_init_fn(worker_id, num_workers, rank, seed):
# The seed of each worker equals to
# num_worker * rank + worker_id + user_seed
worker_seed = num_workers * rank + worker_id + seed
np.random.seed(worker_seed)
random.seed(worker_seed)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=":f"):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
if self.name == "Lr":
fmtstr = "{name}={val" + self.fmt + "}"
else:
fmtstr = "{name}={val" + self.fmt + "} ({avg" + self.fmt + "})"
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
logger.info(" ".join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = "{:" + str(num_digits) + "d}"
return "[" + fmt + "/" + fmt.format(num_batches) + "]"
def trainMetricGPU(output, target, threshold=0.35, pr_iou=0.5):
assert (output.dim() in [2, 3, 4])
assert output.shape == target.shape
output = output.flatten(1)
target = target.flatten(1)
output = torch.sigmoid(output)
output[output < threshold] = 0.
output[output >= threshold] = 1.
# inter & union
inter = (output.bool() & target.bool()).sum(dim=1) # b
union = (output.bool() | target.bool()).sum(dim=1) # b
ious = inter / (union + 1e-6) # 0 ~ 1
# iou & pr@5
iou = ious.mean()
prec = (ious > pr_iou).float().mean()
return 100. * iou, 100. * prec
def ValMetricGPU(output, target, threshold=0.35):
assert output.size(0) == 1
output = output.flatten(1)
target = target.flatten(1)
output = torch.sigmoid(output)
output[output < threshold] = 0.
output[output >= threshold] = 1.
# inter & union
inter = (output.bool() & target.bool()).sum(dim=1) # b
union = (output.bool() | target.bool()).sum(dim=1) # b
ious = inter / (union + 1e-6) # 0 ~ 1
return ious
def intersectionAndUnionGPU(output, target, K, threshold=0.5):
# 'K' classes, output and target sizes are N or N * L or N * H * W, each value in range 0 to K - 1.
assert (output.dim() in [1, 2, 3])
assert output.shape == target.shape
output = output.view(-1)
target = target.view(-1)
output = torch.sigmoid(output)
output[output < threshold] = 0.
output[output >= threshold] = 1.
intersection = output[output == target]
area_intersection = torch.histc(intersection.float(),
bins=K,
min=0,
max=K - 1)
area_output = torch.histc(output.float(), bins=K, min=0, max=K - 1)
area_target = torch.histc(target.float(), bins=K, min=0, max=K - 1)
area_union = area_output + area_target - area_intersection
return area_intersection[1], area_union[1]
def group_weight(weight_group, module, lr):
group_decay = []
group_no_decay = []
for m in module.modules():
if isinstance(m, nn.Linear):
group_decay.append(m.weight)
if m.bias is not None:
group_no_decay.append(m.bias)
elif isinstance(m, nn.modules.conv._ConvNd):
group_decay.append(m.weight)
if m.bias is not None:
group_no_decay.append(m.bias)
elif isinstance(m, nn.modules.batchnorm._BatchNorm):
if m.weight is not None:
group_no_decay.append(m.weight)
if m.bias is not None:
group_no_decay.append(m.bias)
assert len(list(
module.parameters())) == len(group_decay) + len(group_no_decay)
weight_group.append(dict(params=group_decay, lr=lr))
weight_group.append(dict(params=group_no_decay, weight_decay=.0, lr=lr))
return weight_group
def colorize(gray, palette):
# gray: numpy array of the label and 1*3N size list palette
color = Image.fromarray(gray.astype(np.uint8)).convert('P')
color.putpalette(palette)
return color
def find_free_port():
import socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# Binding to port 0 will cause the OS to find an available port for us
sock.bind(("", 0))
port = sock.getsockname()[1]
sock.close()
# NOTE: there is still a chance the port could be taken by other processes.
return port
def get_caller_name(depth=0):
"""
Args:
depth (int): Depth of caller conext, use 0 for caller depth.
Default value: 0.
Returns:
str: module name of the caller
"""
# the following logic is a little bit faster than inspect.stack() logic
frame = inspect.currentframe().f_back
for _ in range(depth):
frame = frame.f_back
return frame.f_globals["__name__"]
class StreamToLoguru:
"""
stream object that redirects writes to a logger instance.
"""
def __init__(self, level="INFO", caller_names=("apex", "pycocotools")):
"""
Args:
level(str): log level string of loguru. Default value: "INFO".
caller_names(tuple): caller names of redirected module.
Default value: (apex, pycocotools).
"""
self.level = level
self.linebuf = ""
self.caller_names = caller_names
def write(self, buf):
full_name = get_caller_name(depth=1)
module_name = full_name.rsplit(".", maxsplit=-1)[0]
if module_name in self.caller_names:
for line in buf.rstrip().splitlines():
# use caller level log
logger.opt(depth=2).log(self.level, line.rstrip())
else:
sys.__stdout__.write(buf)
def flush(self):
pass
def redirect_sys_output(log_level="INFO"):
redirect_logger = StreamToLoguru(log_level)
sys.stderr = redirect_logger
sys.stdout = redirect_logger
def setup_logger(save_dir, distributed_rank=0, filename="log.txt", mode="a"):
"""setup logger for training and testing.
Args:
save_dir(str): location to save log file
distributed_rank(int): device rank when multi-gpu environment
filename (string): log save name.
mode(str): log file write mode, `append` or `override`. default is `a`.
Return:
logger instance.
"""
loguru_format = (
"<green>{time:YYYY-MM-DD HH:mm:ss}</green> | "
"<level>{level: <8}</level> | "
"<cyan>{name}</cyan>:<cyan>{line}</cyan> - <level>{message}</level>")
logger.remove()
save_file = os.path.join(save_dir, filename)
if mode == "o" and os.path.exists(save_file):
os.remove(save_file)
# only keep logger in rank0 process
if distributed_rank == 0:
logger.add(
sys.stderr,
format=loguru_format,
level="INFO",
enqueue=True,
)
logger.add(save_file)
# redirect stdout/stderr to loguru
redirect_sys_output("INFO")