|
import argparse |
|
import os |
|
import warnings |
|
|
|
import cv2 |
|
import torch |
|
import torch.nn.parallel |
|
import torch.utils.data |
|
from loguru import logger |
|
|
|
import utils.config as config |
|
from engine.engine import inference |
|
from model_ import build_segmenter_original |
|
from utils.dataset import RefDataset |
|
from utils.misc import setup_logger |
|
|
|
warnings.filterwarnings("ignore") |
|
cv2.setNumThreads(0) |
|
|
|
|
|
def get_parser(): |
|
parser = argparse.ArgumentParser( |
|
description='Pytorch Referring Expression Segmentation') |
|
parser.add_argument('--config', |
|
default='path to xxx.yaml', |
|
type=str, |
|
help='config file') |
|
parser.add_argument('--opts', |
|
default=None, |
|
nargs=argparse.REMAINDER, |
|
help='override some settings in the config.') |
|
args = parser.parse_args() |
|
assert args.config is not None |
|
cfg = config.load_cfg_from_cfg_file(args.config) |
|
if args.opts is not None: |
|
cfg = config.merge_cfg_from_list(cfg, args.opts) |
|
return cfg |
|
|
|
|
|
@logger.catch |
|
def main(): |
|
args = get_parser() |
|
args.output_dir = os.path.join(args.output_folder, args.exp_name) |
|
if args.visualize: |
|
args.vis_dir = os.path.join(args.output_dir, "vis") |
|
os.makedirs(args.vis_dir, exist_ok=True) |
|
|
|
|
|
setup_logger(args.output_dir, |
|
distributed_rank=0, |
|
filename="test.log", |
|
mode="a") |
|
logger.info(args) |
|
|
|
|
|
test_data = RefDataset(lmdb_dir=args.test_lmdb, |
|
mask_dir=args.mask_root, |
|
dataset=args.dataset, |
|
split=args.test_split, |
|
mode='test', |
|
input_size=args.input_size, |
|
word_length=args.word_len, |
|
args=args) |
|
test_loader = torch.utils.data.DataLoader(test_data, |
|
batch_size=1, |
|
shuffle=False, |
|
num_workers=1, |
|
pin_memory=True) |
|
|
|
|
|
model, _ = build_segmenter_original(args) |
|
model = torch.nn.DataParallel(model).cuda() |
|
logger.info(model) |
|
|
|
args.model_dir = os.path.join(args.output_dir, "best_model_miou.pth") |
|
if os.path.isfile(args.model_dir): |
|
logger.info("=> loading checkpoint '{}'".format(args.model_dir)) |
|
checkpoint = torch.load(args.model_dir) |
|
model.load_state_dict(checkpoint['state_dict'], strict=True) |
|
logger.info("=> loaded checkpoint '{}'".format(args.model_dir)) |
|
else: |
|
raise ValueError( |
|
"=> resume failed! no checkpoint found at '{}'. Please check args.resume again!" |
|
.format(args.model_dir)) |
|
|
|
|
|
inference(test_loader, model, args) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |