VerbCentric-RIS / config /cris_r50.yaml
dianecy's picture
Upload folder using huggingface_hub
86bdb0c verified
DATA:
dataset: refcocog_u
train_lmdb: /home/s1/chaeyunkim/VerbCentric_CY/datasets/lmdb/refcocog_u/train.lmdb
train_split: train
val_lmdb: /home/s1/chaeyunkim/VerbCentric_CY/datasets/lmdb/refcocog_u/val.lmdb
val_split: val
mask_root: /home/s1/chaeyunkim/VerbCentric_CY/datasets/masks/refcocog_u
# Base Arch
clip_pretrain: pretrain/RN50.pt
input_size: 416
word_len: 22
word_dim: 1024
vis_dim: 512
fpn_in: [512, 1024, 1024]
fpn_out: [256, 512, 1024]
sync_bn: True
# Decoder
num_layers: 3
num_head: 8
dim_ffn: 2048
dropout: 0.1
intermediate: False
# Training Setting
workers: 32 # data loader workers
workers_val: 16
epochs: 50
milestones: [35]
start_epoch: 0
batch_size: 64 # batch size for training
batch_size_val: 64 # batch size for validation during training, memory and speed tradeoff
base_lr: 0.0001
lr_decay: 0.1
lr_multi: 0.1
weight_decay: 0.
max_norm: 0.
manual_seed: 0
print_freq: 100
# Resume & Save
metric_mode: 'original'
metric_learning: False
exp_name: CRIS_R50
output_folder: exp/refcocog_u_repro
save_freq: 1
weight: # path to initial weight (default: none)
resume: 'latest' # path to latest checkpoint (default: none)
evaluate: True # evaluate on validation set, extra gpu memory needed and small batch_size_val is recommend
freeze: True
Distributed:
dist_url: tcp://localhost:3681
dist_backend: 'nccl'
multiprocessing_distributed: True
world_size: 1
rank: 0
TEST:
test_split: val-test
test_lmdb: datasets/lmdb/refcocog_u/val.lmdb
visualize: False