File size: 15,000 Bytes
8377130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import os
import time
import math
from tqdm import tqdm
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.cuda.amp as amp
import torch.distributed as dist
import torch.nn.functional as F
import wandb
from loguru import logger
from utils.dataset import tokenize
from utils.misc import (AverageMeter, ProgressMeter, concat_all_gather,
                        trainMetricGPU)


def return_mask(emb_distance):
    B_, B_ = emb_distance.shape
    positive_mask = torch.zeros_like(emb_distance)
    for i in range(B_//2):
        positive_mask[2*i, 2*i+1] = 1
        positive_mask[2*i+1, 2*i] = 1
    positive_mask.fill_diagonal_(1)
    negative_mask = torch.ones_like(emb_distance) - positive_mask

    return positive_mask, negative_mask


def MetricLoss(embeddings, n_pos, alpha = 0.5, args = None):
    # embeddings: ((2*B), C, (H*W))
    # n_pos : chunk size of positive pairs
    # args: args
    # returns: loss
    metric_loss = 0

    # flatten embeddings
    B_, C, HW = embeddings.shape
    emb = torch.mean(embeddings, dim=-1) # (2*B, C)
    emb_i = emb.unsqueeze(1).repeat(1, B_, 1) # (2*B, 2*B, C)
    emb_j = emb.unsqueeze(0).repeat(B_, 1, 1) # (2*B, 2*B, C)
    emb_distance = torch.norm(emb_i - emb_j, dim=-1) # (2*B, 2*B)
    assert torch.sum(torch.diag(emb_distance[:B_, :B_])) == 0, \
    "Diagonals are not zero. please check the permutation on the batch"
    # print("distance metrix : ", emb_distance)

    positive_mask, negative_mask = return_mask(emb_distance)
    positive_loss = torch.sum(emb_distance * positive_mask) / B_**2 #B_

    # negative pairs and loss
    # negative_mask = torch.ones_like(emb_distance) - positive_mask
    negative_loss = -1.0 * torch.log(torch.sum(emb_distance * negative_mask) / B_**2) #(B_**2 - 2*B_))

    # print(positive_mask, negative_mask)

    metric_loss = alpha * positive_loss + (1-alpha) * negative_loss

    return metric_loss


def AngularMetricLoss(embeddings, n_pos, alpha = 0.5, args = None, mask = None):
    # embeddings: ((2*B), C, (H*W))
    # n_pos : chunk size of positive pairs
    # args: args
    # returns: loss
    geometric_loss = 0

    # flatten embeddings
    B_, C, HW = embeddings.shape
    emb = torch.mean(embeddings, dim=-1) # (2*B, C)
    emb_i = emb.unsqueeze(1).repeat(1, B_, 1) # (2*B, 2*B, C)
    emb_j = emb.unsqueeze(0).repeat(B_, 1, 1) # (2*B, 2*B, C)
    sim = nn.CosineSimilarity(dim=-1, eps=1e-6)
    sim_matrix = sim(emb_i, emb_j).reshape(B_, B_) # (2*B , 2*B)
    sim_matrix = torch.clamp(sim_matrix, min=-0.9999, max=0.9999)
    #print("similarity metrix : ", sim_matrix)
    phi = torch.acos(sim_matrix) # (2*B, 2*B)
    #print("phi metrix : ", phi)
    #print(args.batch_size, B_)
    assert (B_ == args.batch_size * 2 * args.ngpus_per_node), \
    "B_ must be 2x batch_size. please check the inputs."

    # positive pairs and loss
    positive_mask, negative_mask = return_mask(sim_matrix)
    # positive_mask = torch.zeros_like(sim_matrix)
    # for i in range(B_//2):
    #     positive_mask[2*i, 2*i+1] = 1
    #     positive_mask[2*i+1, 2*i] = 1
    # positive_mask.fill_diagonal_(1)
    positive_loss = torch.sum((phi**2) * positive_mask) / B_**2

    # negative pairs and loss
    # negative_mask = torch.ones_like(sim_matrix) - positive_mask
    phi_mask = phi < args.phi_threshold
    negative_loss = (args.phi_threshold - phi)**2 
    #print(negative_mask * phi_mask)
    negative_loss = torch.sum(negative_loss * negative_mask * phi_mask) / B_**2

    #print("pos loss, neg loss : ", positive_loss, negative_loss)

    geometric_loss = alpha * positive_loss + (1-alpha) * negative_loss

    return geometric_loss


def train(train_loader, model, optimizer, scheduler, scaler, epoch, args):
    batch_time = AverageMeter('Batch', ':2.2f')
    data_time = AverageMeter('Data', ':2.2f')
    lr = AverageMeter('Lr', ':1.6f')
    loss_meter = AverageMeter('Loss', ':2.4f')
    iou_meter = AverageMeter('IoU', ':2.2f')
    pr_meter = AverageMeter('Prec@50', ':2.2f')
    progress = ProgressMeter(
        len(train_loader),
        [batch_time, data_time, lr, loss_meter, iou_meter, pr_meter],
        prefix="Training: Epoch=[{}/{}] ".format(epoch, args.epochs))
    metric_learning = args.metric_learning
    # mix_distance_angular = args.mix_distance_angular
    # positive_strength = args.positive_strength
    # angular_loss_weight = args.metric_loss_weight * math.exp(-3.0 * (1-epoch/args.epochs)**2)
    #print("epoch : ", epoch, ", angular loss weight : ", angular_loss_weight)
    # distance_loss_weight = args.distance_loss_weight

    model.train()
    time.sleep(2)
    end = time.time()

    # size_list = [320, 352, 384, 416, 448, 480, 512]
    # idx = np.random.choice(len(size_list))
    # new_size = size_list[idx]

    for i, (image, text, target) in enumerate(train_loader):
        data_time.update(time.time() - end)
        # data
        image = image.cuda(non_blocking=True)
        text = text.cuda(non_blocking=True)
        target = target.cuda(non_blocking=True).unsqueeze(1)

        # # multi-scale training
        # image = F.interpolate(image, size=(new_size, new_size), mode='bilinear')

        # masking when params exists
        #mask_tensor = torch.tensor([True if params[i] else False for i in range(len(params))], dtype=torch.bool)

        # forward
        with amp.autocast():
            pred, target, loss = model(image, text, target)
            # pred, target, CE_loss, metric_tensor = model(image, text, target)
                
        # gather tensors
        # metric_tensor = concat_all_gather(metric_tensor)
        
        # get metric loss
        #print("gathered tensor shape : ", metric_tensor.shape)
        # metric_loss = 0
        # if metric_learning:
        #     metric_loss += \
        #         angular_loss_weight * AngularMetricLoss(metric_tensor, 2, alpha=positive_strength, args = args) #, mask=mask_tensor) 
        #     if mix_distance_angular:
        #         metric_loss += \
        #             distance_loss_weight * MetricLoss(metric_tensor, 2, alpha=positive_strength, args = args) #, mask=mask_tensor)
        #     loss = (CE_loss + metric_loss) / \
        #             (1 + angular_loss_weight*metric_learning + \
        #             distance_loss_weight*metric_learning*mix_distance_angular)
        # else :
            # loss = CE_loss

        # backward
        optimizer.zero_grad()
        scaler.scale(loss).backward()
        #loss.backward()
        if args.max_norm:
            torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_norm)
        #optimizer.step()
        scaler.step(optimizer)
        scaler.update()
        #dist.barrier()

        # metric
        iou, pr5 = trainMetricGPU(pred, target, 0.35, 0.5)
        dist.all_reduce(loss.detach())
        dist.all_reduce(iou)
        dist.all_reduce(pr5)
        loss = loss / dist.get_world_size()
        iou = iou / dist.get_world_size()
        pr5 = pr5 / dist.get_world_size()

        loss_meter.update(loss.item(), image.size(0))
        iou_meter.update(iou.item(), image.size(0))
        pr_meter.update(pr5.item(), image.size(0))
        lr.update(scheduler.get_last_lr()[-1])
        batch_time.update(time.time() - end)
        end = time.time()

        if (i + 1) % args.print_freq == 0:
            progress.display(i + 1)
            if dist.get_rank() in [-1, 0]:
                wandb.log(
                    {
                        "time/batch": batch_time.val,
                        "time/data": data_time.val,
                        "training/lr": lr.val,
                        "training/loss": loss_meter.val,
                        "training/iou": iou_meter.val,
                        "training/prec@50": pr_meter.val,
                    },
                    step=epoch * len(train_loader) + (i + 1))
    torch.cuda.empty_cache()


@torch.no_grad()
def validate(val_loader, model, epoch, args):
    iou_list = []
    I_list = []
    U_list = []
    model.eval()
    time.sleep(16)
    for imgs, texts, masks, param in val_loader:
        # data
        imgs = imgs.cuda(non_blocking=True)
        texts = texts.cuda(non_blocking=True)
        # inference
        preds = model(imgs, texts)
        preds = torch.sigmoid(preds)
        if preds.shape[-2:] != imgs.shape[-2:]:
            preds = F.interpolate(preds,
                                  size=imgs.shape[-2:],
                                  mode='bicubic',
                                  align_corners=True).squeeze(1)
        # process one batch
        # for pred, mask_dir, mat, ori_size in zip(preds, param['mask_dir'],
        #                                          param['inverse'],
        #                                          param['ori_size']):
        #     h, w = np.array(ori_size)
        #     mat = np.array(mat)
        #     pred = pred.cpu().numpy()
        #     pred = cv2.warpAffine(pred, mat, (w, h),
        #                           flags=cv2.INTER_CUBIC,
        #                           borderValue=0.)
        #     pred = np.array(pred > 0.35)
        #     mask = cv2.imread(mask_dir, flags=cv2.IMREAD_GRAYSCALE)
        #     mask = mask / 255.
        #     # iou
        #     inter = np.logical_and(pred, mask)
        #     union = np.logical_or(pred, mask)
        #     iou = np.sum(inter) / (np.sum(union) + 1e-6)
        #     iou_list.append(iou)
        #     I_list.append(inter)
        #     U_list.append(union)
        for pred, mask in zip(preds, masks):
            # h, w = np.array(ori_size)
            # mat = np.array(mat)
            pred = pred.cpu().numpy()
            # pred = cv2.warpAffine(pred, mat, (w, h),
            #                       flags=cv2.INTER_CUBIC,
            #                       borderValue=0.)
            pred = np.array(pred > 0.35)
            # mask = cv2.imread(mask_dir, flags=cv2.IMREAD_GRAYSCALE)
            # mask = mask / 255.
            mask = mask.numpy()
            # iou
            inter = np.logical_and(pred, mask)
            union = np.logical_or(pred, mask)
            iou = np.sum(inter) / (np.sum(union) + 1e-6)
            I_list.append(inter)
            U_list.append(union)
            iou_list.append(iou)

    iou_list = np.stack(iou_list)
    iou_list = torch.from_numpy(iou_list).to(imgs.device)
    iou_list = concat_all_gather(iou_list)
    
    I_list = np.stack(I_list)
    I_list = torch.from_numpy(I_list).to(imgs.device)
    I_list = concat_all_gather(I_list)
 
    U_list = np.stack(U_list)
    U_list = torch.from_numpy(U_list).to(imgs.device)
    U_list = concat_all_gather(U_list)

    overall_I = I_list.sum().item()
    overall_U = U_list.sum().item()
    overall_IoU = overall_I / (overall_U + 1e-6)  # to avoid division by zero

    
    prec_list = []
    for thres in torch.arange(0.5, 1.0, 0.1):
        tmp = (iou_list > thres).float().mean()
        prec_list.append(tmp)
    iou = iou_list.mean()
    prec = {}
    temp = '  '
    for i, thres in enumerate(range(5, 10)):
        key = 'Pr@{}'.format(thres * 10)
        value = prec_list[i].item()
        prec[key] = value
        temp += "{}: {:.2f}  ".format(key, 100. * value)
    head = 'Evaluation: Epoch=[{}/{}]  IoU={:.2f}  OIoU={:.4f}'.format(
        epoch, args.epochs, 100. * iou.item(), 100. * overall_IoU)
    logger.info(head + temp)
    
    # return three results : mIoU, oIoU and prec results
    torch.cuda.empty_cache()
    return iou.item(), overall_IoU, prec


@torch.no_grad()
def inference(test_loader, model, args):
    iou_list = []
    I_list = []
    U_list = []

    tbar = tqdm(test_loader, desc='Inference:', ncols=100)
    model.eval()
    time.sleep(2)
    for img, mask, param in tbar:
        # data
        # img = img.cuda(non_blocking=True)
        # mask = cv2.imread(param['mask_dir'][0], flags=cv2.IMREAD_GRAYSCALE)
        img = img.cuda(non_blocking=True)
        mask = mask[0].cpu().numpy()
        
        # dump image & mask
        if args.visualize:
            seg_id = param['seg_id'][0].cpu().numpy()
            img_name = '{}-img.jpg'.format(seg_id)
            mask_name = '{}-mask.png'.format(seg_id)
            cv2.imwrite(filename=os.path.join(args.vis_dir, img_name),
                        img=param['ori_img'][0].cpu().numpy())
            cv2.imwrite(filename=os.path.join(args.vis_dir, mask_name),
                        img=mask)
        # multiple sentences
        for sent in param['sents']:
            # mask = mask / 255.
            text = tokenize(sent, args.word_len, True)
            text = text.cuda(non_blocking=True)
            # inference
            pred = model(img, text)
            pred = torch.sigmoid(pred)
            if pred.shape[-2:] != img.shape[-2:]:
                pred = F.interpolate(pred,
                                     size=img.shape[-2:],
                                     mode='bicubic',
                                     align_corners=True).squeeze()
            # process one sentence
            # h, w = param['ori_size'].numpy()[0]
            # mat = param['inverse'].numpy()[0]
            pred = pred.cpu().numpy()
            # pred = cv2.warpAffine(pred, mat, (w, h),
            #                       flags=cv2.INTER_CUBIC,
            #                       borderValue=0.)
            pred = np.array(pred > 0.35)
            # iou
            inter = np.logical_and(pred, mask)
            union = np.logical_or(pred, mask)
            iou = np.sum(inter) / (np.sum(union) + 1e-6)
            iou_list.append(iou)
            I_list.append(inter)
            U_list.append(union)
            # dump prediction
            if args.visualize:
                pred = np.array(pred*255, dtype=np.uint8)
                sent = "_".join(sent[0].split(" "))
                pred_name = '{}-iou={:.2f}-{}.png'.format(seg_id, iou*100, sent)
                cv2.imwrite(filename=os.path.join(args.vis_dir, pred_name),
                            img=pred)
    logger.info('=> Metric Calculation <=')
    iou_list = np.stack(iou_list)
    iou_list = torch.from_numpy(iou_list).to(img.device)

    I_list = np.stack(I_list)
    I_list = torch.from_numpy(I_list).to(img.device)
    U_list = np.stack(U_list)
    U_list = torch.from_numpy(U_list).to(img.device)
    overall_I = I_list.sum().item()
    overall_U = U_list.sum().item()
    overall_IoU = overall_I / (overall_U + 1e-6)  # to avoid division by zero

    prec_list = []
    for thres in torch.arange(0.5, 1.0, 0.1):
        tmp = (iou_list > thres).float().mean()
        prec_list.append(tmp)
    iou = iou_list.mean()
    prec = {}
    for i, thres in enumerate(range(5, 10)):
        key = 'Pr@{}'.format(thres*10)
        value = prec_list[i].item()
        prec[key] = value
    logger.info('IoU={:.2f}  OIoU={:.4f}'.format(100.*iou.item(), 100. * overall_IoU))
    for k, v in prec.items():
        logger.info('{}: {:.2f}.'.format(k, 100.*v))

    return iou.item(), overall_IoU, prec