File size: 12,946 Bytes
fce6bfe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
#%%
import os
from typing import List, Union
import json
import cv2
import lmdb
import random
import numpy as np
import pyarrow as pa
import torch
from torch.utils.data import Dataset
import itertools
import albumentations as A
from albumentations.pytorch import ToTensorV2
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
info = {
'refcoco': {
'train': 42404,
'val': 3811,
'val-test': 3811,
'testA': 1975,
'testB': 1810
},
'refcoco+': {
'train': 42278,
'val': 3805,
'val-test': 3805,
'testA': 1975,
'testB': 1798
},
'refcocog_u': {
'train': 42226,
'val': 2573,
'val-test': 2573,
'test': 5023,
},
'refcocog_g': {
'train': 44822,
'val': 5000,
'val-test': 5000
}
}
_tokenizer = _Tokenizer()
#%%
def tokenize(texts: Union[str, List[str]],
context_length: int = 77,
truncate: bool = False) -> torch.LongTensor:
"""
Returns the tokenized representation of given input string(s)
Parameters
----------
texts : Union[str, List[str]]
An input string or a list of input strings to tokenize
context_length : int
The context length to use; all CLIP models use 77 as the context length
truncate: bool
Whether to truncate the text in case its encoding is longer than the context length
Returns
-------
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
"""
if isinstance(texts, str):
texts = [texts]
sot_token = _tokenizer.encoder["<|startoftext|>"]
eot_token = _tokenizer.encoder["<|endoftext|>"]
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token]
for text in texts]
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
for i, tokens in enumerate(all_tokens):
if len(tokens) > context_length:
if truncate:
tokens = tokens[:context_length]
tokens[-1] = eot_token
else:
raise RuntimeError(
f"Input {texts[i]} is too long for context length {context_length}"
)
result[i, :len(tokens)] = torch.tensor(tokens)
return result
def loads_pyarrow(buf):
"""
Args:
buf: the output of `dumps`.
"""
return pa.deserialize(buf)
class RefDataset(Dataset):
def __init__(self, lmdb_dir, mask_dir, dataset, split, mode, input_size,
word_length, args):
super(RefDataset, self).__init__()
self.lmdb_dir = lmdb_dir
self.mask_dir = mask_dir
self.dataset = dataset
self.split = split
self.mode = mode
self.input_size = (input_size, input_size)
self.word_length = word_length
self.mean = torch.tensor([0.48145466, 0.4578275,
0.40821073]).reshape(3, 1, 1)
self.std = torch.tensor([0.26862954, 0.26130258,
0.27577711]).reshape(3, 1, 1)
self.length = info[dataset][split]
self.env = None
self.exclude_position = args.exclude_pos
self.metric_learning = args.metric_learning
self.exclude_multiobj = args.exclude_multiobj
self.metric_mode = args.metric_mode
self.resize_bg1 = A.Compose([
A.Resize(input_size, input_size, always_apply=True)])
if self.metric_learning:
self.hardneg_prob = args.hn_prob # Hard negative probability �߰�
self.multi_obj_ref_ids = self._load_multi_obj_ref_ids()
self.hardpos_meta, self.hardneg_meta = self._load_metadata()
else:
self.hardneg_prob = 0.0
self.multi_obj_ref_ids = None
self.hardpos_meta, self.hardneg_meta = None, None
def _load_multi_obj_ref_ids(self):
# Load multi-object reference IDs based on configurations
if not self.exclude_multiobj and not self.exclude_position :
return None
elif self.exclude_position:
multiobj_path = '/home/chaeyun/data/projects/chaeyun/RIS/CRIS.pytorch/multiobj_ov2_nopos.txt'
elif self.exclude_multiobj :
multiobj_path = '/home/chaeyun/data/projects/chaeyun/RIS/CRIS.pytorch/multiobj_ov3.txt'
with open(multiobj_path, 'r') as f:
return [int(line.strip()) for line in f.readlines()]
def _load_metadata(self):
# Load metadata for hard positive verb phrases, hard negative queries
hardpos_path = '/data2/projects/chaeyun/VerbCentric_RIS/hardpos_verbphrase_0906upd.json'
hardneg_path = '/data2/projects/chaeyun/VerbCentric_RIS/hardneg_verb.json'
with open(hardpos_path, 'r', encoding='utf-8') as f:
hardpos_json = json.load(f)
if self.metric_mode == "hardpos_only" :
hardneg_json = None
else :
with open(hardneg_path, 'r', encoding='utf-8') as q:
hardneg_json = json.load(q)
return hardpos_json, hardneg_json
def _init_db(self):
self.env = lmdb.open(self.lmdb_dir,
subdir=os.path.isdir(self.lmdb_dir),
readonly=True,
lock=False,
readahead=False,
meminit=False)
with self.env.begin(write=False) as txn:
self.length = loads_pyarrow(txn.get(b'__len__'))
self.keys = loads_pyarrow(txn.get(b'__keys__'))
def __len__(self):
return self.length
def __getitem__(self, index):
# Delay loading LMDB data until after initialization: https://github.com/chainer/chainermn/issues/129
if self.env is None:
self._init_db()
env = self.env
with env.begin(write=False) as txn:
byteflow = txn.get(self.keys[index])
ref = loads_pyarrow(byteflow)
# img
ori_img = cv2.imdecode(np.frombuffer(ref['img'], np.uint8),
cv2.IMREAD_COLOR)
img = cv2.cvtColor(ori_img, cv2.COLOR_BGR2RGB)
# mask
seg_id = ref['seg_id']
mask_dir = os.path.join(self.mask_dir, str(seg_id) + '.png')
mask = cv2.imdecode(np.frombuffer(ref['mask'], np.uint8),
cv2.IMREAD_GRAYSCALE)
mask = mask / 255.
# image resizing
resized = self.resize_bg1(image=img, mask=mask)
imgs, masks = [resized['image']], [resized['mask']]
img = imgs[0]
mask = masks[0]
mask = mask.astype(np.uint8)
mask[mask>0] = 1
# image transform
img_size = img.shape[:2]
mat, mat_inv = self.getTransformMat(img_size, True)
img = cv2.warpAffine(
img,
mat,
self.input_size,
flags=cv2.INTER_CUBIC,
borderValue=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255])
# sentences
sents = ref['sents']
n_sentences = ref['num_sents']
if self.mode == 'train':
# mask transform
mask = cv2.warpAffine(mask,
mat,
self.input_size,
flags=cv2.INTER_LINEAR,
borderValue=0.)
# if metric learning, assign hard positive verb phrase if applicable
idx = np.random.choice(n_sentences, 1, replace=False)[0]
sent = sents[idx]
raw_hardpos, hardpos = self._get_hardpos_verb(ref, seg_id, idx)
img, mask = self.convert(img, mask)
word_vec = tokenize(sent, self.word_length, True).squeeze(0)
if self.metric_mode == "hardpos_only" :
return img, word_vec, mask, hardpos
else :
choice = np.random.choice(['hn', 'no_hn'], p=[self.hardneg_prob, 1 - self.hardneg_prob])
if choice == 'hn' and raw_hardpos :
raw_hardneg, hardneg = self._get_hardneg_verb(ref, seg_id, idx)
else :
hardneg = torch.zeros(self.word_length, dtype=torch.long)
return img, word_vec, mask, hardpos, hardneg
elif self.mode == 'val':
# sentence -> vector
sent = sents[0]
word_vec = tokenize(sent, self.word_length, True).squeeze(0)
img = self.convert(img)[0]
params = {
'mask_dir': mask_dir,
'inverse': mat_inv,
'ori_size': np.array(img_size)
}
return img, word_vec, mask, params
else:
# sentence -> vector
img = self.convert(img)[0]
params = {
'ori_img': ori_img,
'seg_id': seg_id,
'mask_dir': mask_dir,
'inverse': mat_inv,
'ori_size': np.array(img_size),
'sents': sents
}
return img, mask, params
def _get_hardneg_verb(self, ref, seg_id, sent_idx):
"""
Handle the logic for selecting hard positive verb phrases during metric learning.
Returns the sentence, raw_verb, and tokenized verb if applicable.
"""
# Extract metadata for hard positives if present
hardneg_dict = self.hardneg_meta.get(str(seg_id), {})
sent_id_list = list(hardneg_dict.keys())
cur_hardneg = hardpos_dict.get(sent_id_list[sent_idx], [])
if cur_hardneg:
# Assign a hard positive verb phrase if available
raw_verb_hardneg = random.choice(cur_hardneg)
verb_hardneg = tokenize(raw_verb_hardneg, self.word_length, True).squeeze(0)
return raw_verb_hardneg, verb_hardneg
verb_hardneg = torch.zeros(self.word_length, dtype=torch.long)
return '', verb_hardneg
def _get_hardpos_verb(self, ref, seg_id, sent_idx):
"""
Handle the logic for selecting hard positive verb phrases during metric learning.
Returns the sentence, raw_verb, and tokenized verb if applicable.
"""
# If the object appears multiple times, no hard positive is used
if seg_id in self.multi_obj_ref_ids:
verb_hardpos = torch.zeros(self.word_length, dtype=torch.long)
return '', verb_hardpos
# Extract metadata for hard positives if present
hardpos_dict = self.hardpos_meta.get(str(seg_id), {})
sent_id_list = list(hardpos_dict.keys())
# cur_hardpos = hardpos_dict.get(sent_id_list[sent_idx], [])
cur_hardpos = list(itertools.chain(*hardpos_dict.values()))
if cur_hardpos:
# Assign a hard positive verb phrase if available
raw_verb = random.choice(cur_hardpos)
verb_hardpos = tokenize(raw_verb, self.word_length, True).squeeze(0)
return raw_verb, verb_hardpos
verb_hardpos = torch.zeros(self.word_length, dtype=torch.long)
return '', verb_hardpos
def getTransformMat(self, img_size, inverse=False):
ori_h, ori_w = img_size
inp_h, inp_w = self.input_size
scale = min(inp_h / ori_h, inp_w / ori_w)
new_h, new_w = ori_h * scale, ori_w * scale
bias_x, bias_y = (inp_w - new_w) / 2., (inp_h - new_h) / 2.
src = np.array([[0, 0], [ori_w, 0], [0, ori_h]], np.float32)
dst = np.array([[bias_x, bias_y], [new_w + bias_x, bias_y],
[bias_x, new_h + bias_y]], np.float32)
mat = cv2.getAffineTransform(src, dst)
if inverse:
mat_inv = cv2.getAffineTransform(dst, src)
return mat, mat_inv
return mat, None
def convert(self, img, mask=None):
# Image ToTensor & Normalize
img = torch.from_numpy(img.transpose((2, 0, 1)))
if not isinstance(img, torch.FloatTensor):
img = img.float()
img.div_(255.).sub_(self.mean).div_(self.std)
# Mask ToTensor
if mask is not None:
mask = torch.from_numpy(mask)
if not isinstance(mask, torch.FloatTensor):
mask = mask.float()
return img, mask
def __repr__(self):
return self.__class__.__name__ + "(" + \
f"db_path={self.lmdb_dir}, " + \
f"dataset={self.dataset}, " + \
f"split={self.split}, " + \
f"mode={self.mode}, " + \
f"input_size={self.input_size}, " + \
f"word_length={self.word_length}"
# def get_length(self):
# return self.length
# def get_sample(self, idx):
# return self.__getitem__(idx)
|