File size: 12,042 Bytes
31dfd6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import math

import torch
import torch.nn as nn
import torch.nn.functional as F


def conv_layer(in_dim, out_dim, kernel_size=1, padding=0, stride=1):
    return nn.Sequential(
        nn.Conv2d(in_dim, out_dim, kernel_size, stride, padding, bias=False),
        nn.BatchNorm2d(out_dim), nn.ReLU(True))


def linear_layer(in_dim, out_dim, bias=False):
    return nn.Sequential(nn.Linear(in_dim, out_dim, bias),
                         nn.BatchNorm1d(out_dim), nn.ReLU(True))


class CoordConv(nn.Module):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 padding=1,
                 stride=1):
        super().__init__()
        self.conv1 = conv_layer(in_channels + 2, out_channels, kernel_size,
                                padding, stride)

    def add_coord(self, input):
        b, _, h, w = input.size()
        x_range = torch.linspace(-1, 1, w, device=input.device)
        y_range = torch.linspace(-1, 1, h, device=input.device)
        y, x = torch.meshgrid(y_range, x_range)
        y = y.expand([b, 1, -1, -1])
        x = x.expand([b, 1, -1, -1])
        coord_feat = torch.cat([x, y], 1)
        input = torch.cat([input, coord_feat], 1)
        return input

    def forward(self, x):
        x = self.add_coord(x)
        x = self.conv1(x)
        return x


class Projector(nn.Module):
    def __init__(self, word_dim=1024, in_dim=256, kernel_size=3):
        super().__init__()
        self.in_dim = in_dim
        self.kernel_size = kernel_size
        # visual projector
        self.vis = nn.Sequential(  # os16 -> os4
            nn.Upsample(scale_factor=2, mode='bilinear'),
            conv_layer(in_dim * 2, in_dim * 2, 3, padding=1),
            nn.Upsample(scale_factor=2, mode='bilinear'),
            conv_layer(in_dim * 2, in_dim, 3, padding=1),
            nn.Conv2d(in_dim, in_dim, 1))
        # textual projector
        out_dim = 1 * in_dim * kernel_size * kernel_size + 1
        self.txt = nn.Linear(word_dim, out_dim)

    def forward(self, x, word):
        '''
            x: b, 512, 26, 26
            word: b, 512
        '''
        x = self.vis(x)
        B, C, H, W = x.size()
        # 1, b*256, 104, 104
        x = x.reshape(1, B * C, H, W)
        # txt: b, (256*3*3 + 1) -> b, 256, 3, 3 / b
        word = self.txt(word)
        weight, bias = word[:, :-1], word[:, -1]
        weight = weight.reshape(B, C, self.kernel_size, self.kernel_size)
        # Conv2d - 1, b*256, 104, 104 -> 1, b, 104, 104
        out = F.conv2d(x,
                       weight,
                       padding=self.kernel_size // 2,
                       groups=weight.size(0),
                       bias=bias)
        out = out.transpose(0, 1)
        # b, 1, 104, 104
        return out


class TransformerDecoder(nn.Module):
    def __init__(self,
                 num_layers,
                 d_model,
                 nhead,
                 dim_ffn,
                 dropout,
                 return_intermediate=False):
        super().__init__()
        self.layers = nn.ModuleList([
            TransformerDecoderLayer(d_model=d_model,
                                    nhead=nhead,
                                    dim_feedforward=dim_ffn,
                                    dropout=dropout) for _ in range(num_layers)
        ])
        self.num_layers = num_layers
        self.norm = nn.LayerNorm(d_model)
        self.return_intermediate = return_intermediate

    @staticmethod
    def pos1d(d_model, length):
        """
        :param d_model: dimension of the model
        :param length: length of positions
        :return: length*d_model position matrix
        """
        if d_model % 2 != 0:
            raise ValueError("Cannot use sin/cos positional encoding with "
                             "odd dim (got dim={:d})".format(d_model))
        pe = torch.zeros(length, d_model)
        position = torch.arange(0, length).unsqueeze(1)
        div_term = torch.exp((torch.arange(0, d_model, 2, dtype=torch.float) *
                              -(math.log(10000.0) / d_model)))
        pe[:, 0::2] = torch.sin(position.float() * div_term)
        pe[:, 1::2] = torch.cos(position.float() * div_term)

        return pe.unsqueeze(1)  # n, 1, 512

    @staticmethod
    def pos2d(d_model, height, width):
        """
        :param d_model: dimension of the model
        :param height: height of the positions
        :param width: width of the positions
        :return: d_model*height*width position matrix
        """
        if d_model % 4 != 0:
            raise ValueError("Cannot use sin/cos positional encoding with "
                             "odd dimension (got dim={:d})".format(d_model))
        pe = torch.zeros(d_model, height, width)
        # Each dimension use half of d_model
        d_model = int(d_model / 2)
        div_term = torch.exp(
            torch.arange(0., d_model, 2) * -(math.log(10000.0) / d_model))
        pos_w = torch.arange(0., width).unsqueeze(1)
        pos_h = torch.arange(0., height).unsqueeze(1)
        pe[0:d_model:2, :, :] = torch.sin(pos_w * div_term).transpose(
            0, 1).unsqueeze(1).repeat(1, height, 1)
        pe[1:d_model:2, :, :] = torch.cos(pos_w * div_term).transpose(
            0, 1).unsqueeze(1).repeat(1, height, 1)
        pe[d_model::2, :, :] = torch.sin(pos_h * div_term).transpose(
            0, 1).unsqueeze(2).repeat(1, 1, width)
        pe[d_model + 1::2, :, :] = torch.cos(pos_h * div_term).transpose(
            0, 1).unsqueeze(2).repeat(1, 1, width)

        return pe.reshape(-1, 1, height * width).permute(2, 1, 0)  # hw, 1, 512

    def forward(self, vis, txt, pad_mask):
        '''
            vis: b, 512, h, w
            txt: b, L, 512
            pad_mask: b, L
        '''
        B, C, H, W = vis.size()
        _, L, D = txt.size()
        # position encoding
        vis_pos = self.pos2d(C, H, W)
        txt_pos = self.pos1d(D, L)
        # reshape & permute
        vis = vis.reshape(B, C, -1).permute(2, 0, 1)
        txt = txt.permute(1, 0, 2)
        # forward
        output = vis
        intermediate = []
        for layer in self.layers:
            output = layer(output, txt, vis_pos, txt_pos, pad_mask)
            if self.return_intermediate:
                # HW, b, 512 -> b, 512, HW
                intermediate.append(self.norm(output).permute(1, 2, 0))

        if self.norm is not None:
            # HW, b, 512 -> b, 512, HW
            output = self.norm(output).permute(1, 2, 0)
            if self.return_intermediate:
                intermediate.pop()
                intermediate.append(output)
                # [output1, output2, ..., output_n]
                return intermediate
            else:
                # b, 512, HW
                return output
        return output


class TransformerDecoderLayer(nn.Module):
    def __init__(self,
                 d_model=512,
                 nhead=9,
                 dim_feedforward=2048,
                 dropout=0.1):
        super().__init__()
        # Normalization Layer
        self.self_attn_norm = nn.LayerNorm(d_model)
        self.cross_attn_norm = nn.LayerNorm(d_model)
        # Attention Layer
        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        self.multihead_attn = nn.MultiheadAttention(d_model,
                                                    nhead,
                                                    dropout=dropout,
                                                    kdim=d_model,
                                                    vdim=d_model)
        # FFN
        self.ffn = nn.Sequential(nn.Linear(d_model, dim_feedforward),
                                 nn.ReLU(True), nn.Dropout(dropout),
                                 nn.LayerNorm(dim_feedforward),
                                 nn.Linear(dim_feedforward, d_model))
        # LayerNorm & Dropout
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.dropout3 = nn.Dropout(dropout)

    def with_pos_embed(self, tensor, pos):
        return tensor if pos is None else tensor + pos.to(tensor.device)

    def forward(self, vis, txt, vis_pos, txt_pos, pad_mask):
        '''
            vis: 26*26, b, 512
            txt: L, b, 512
            vis_pos: 26*26, 1, 512
            txt_pos: L, 1, 512
            pad_mask: b, L
        '''
        # Self-Attention
        vis2 = self.norm1(vis)
        q = k = self.with_pos_embed(vis2, vis_pos)
        vis2 = self.self_attn(q, k, value=vis2)[0]
        vis2 = self.self_attn_norm(vis2)
        vis = vis + self.dropout1(vis2)
        # Cross-Attention
        vis2 = self.norm2(vis)
        vis2 = self.multihead_attn(query=self.with_pos_embed(vis2, vis_pos),
                                   key=self.with_pos_embed(txt, txt_pos),
                                   value=txt,
                                   key_padding_mask=pad_mask)[0]
        vis2 = self.cross_attn_norm(vis2)
        vis = vis + self.dropout2(vis2)
        # FFN
        vis2 = self.norm3(vis)
        vis2 = self.ffn(vis2)
        vis = vis + self.dropout3(vis2)
        return vis


class FPN(nn.Module):
    def __init__(self,
                 in_channels=[512, 1024, 1024],
                 out_channels=[256, 512, 1024]):
        super(FPN, self).__init__()
        # text projection
        self.txt_proj = linear_layer(in_channels[2], out_channels[2])
        # fusion 1: v5 & seq -> f_5: b, 1024, 13, 13
        self.f1_v_proj = conv_layer(in_channels[2], out_channels[2], 1, 0)
        self.norm_layer = nn.Sequential(nn.BatchNorm2d(out_channels[2]),
                                        nn.ReLU(True))
        # fusion 2: v4 & fm -> f_4: b, 512, 26, 26
        self.f2_v_proj = conv_layer(in_channels[1], out_channels[1], 3, 1)
        self.f2_cat = conv_layer(out_channels[2] + out_channels[1],
                                 out_channels[1], 1, 0)
        # fusion 3: v3 & fm_mid -> f_3: b, 512, 52, 52
        self.f3_v_proj = conv_layer(in_channels[0], out_channels[0], 3, 1)
        self.f3_cat = conv_layer(out_channels[0] + out_channels[1],
                                 out_channels[1], 1, 0)
        # fusion 4: f_3 & f_4 & f_5 -> fq: b, 256, 26, 26
        self.f4_proj5 = conv_layer(out_channels[2], out_channels[1], 3, 1)
        self.f4_proj4 = conv_layer(out_channels[1], out_channels[1], 3, 1)
        self.f4_proj3 = conv_layer(out_channels[1], out_channels[1], 3, 1)
        # aggregation
        self.aggr = conv_layer(3 * out_channels[1], out_channels[1], 1, 0)
        self.coordconv = nn.Sequential(
            CoordConv(out_channels[1], out_channels[1], 3, 1),
            conv_layer(out_channels[1], out_channels[1], 3, 1))

    def forward(self, imgs, state):
        # v3, v4, v5: 256, 52, 52 / 512, 26, 26 / 1024, 13, 13
        v3, v4, v5 = imgs
        # fusion 1: b, 1024, 13, 13
        # text projection: b, 1024 -> b, 1024
        state = self.txt_proj(state).unsqueeze(-1).unsqueeze(
            -1)  # b, 1024, 1, 1
        f5 = self.f1_v_proj(v5)
        f5 = self.norm_layer(f5 * state)
        # fusion 2: b, 512, 26, 26
        f4 = self.f2_v_proj(v4)
        f5_ = F.interpolate(f5, scale_factor=2, mode='bilinear')
        f4 = self.f2_cat(torch.cat([f4, f5_], dim=1))
        # fusion 3: b, 256, 26, 26
        f3 = self.f3_v_proj(v3)
        f3 = F.avg_pool2d(f3, 2, 2)
        f3 = self.f3_cat(torch.cat([f3, f4], dim=1))
        # fusion 4: b, 512, 13, 13 / b, 512, 26, 26 / b, 512, 26, 26
        fq5 = self.f4_proj5(f5)
        fq4 = self.f4_proj4(f4)
        fq3 = self.f4_proj3(f3)
        # query
        fq5 = F.interpolate(fq5, scale_factor=2, mode='bilinear')
        fq = torch.cat([fq3, fq4, fq5], dim=1)
        fq = self.aggr(fq)
        fq = self.coordconv(fq)
        # b, 512, 26, 26
        return fq, f5