#!/bin/bash #SBATCH --job-name=dmmibs12-gg #SBATCH --partition=a6000 #SBATCH --gres=gpu:1 #SBATCH --time=12-00:00:00 # d-hh:mm:ss, job time limit #SBATCH --mem=32000 # cpu memory size #SBATCH --cpus-per-task=6 #SBATCH --output=./trainlog/dmmi_gref_google_bs12_repro.log ml purge ml load cuda/11.8 eval "$(conda shell.bash hook)" conda activate risall cd /data2/projects/chaeyun/RIS-DMMI export NCCL_P2P_DISABLE=1 export NVIDIA_TF32_OVERRIDE=0 # dmmi_swin_hardpos_only GPUS=1 OUTPUT_DIR=$1 EXP_NAME=$2 # MARGIN=$3 # TEMP=$4 # MODE=$5 # TRAIN CUDA_VISIBLE_DEVICES=0 torchrun \ --nproc_per_node=$GPUS --master_port=2947 train.py \ --model dmmi_swin \ --dataset refcocog \ --split val \ --splitBy google \ --output_dir ${OUTPUT_DIR} \ --model_id ${EXP_NAME} \ --batch-size 12 \ --lr 0.00005 \ --wd 1e-2 \ --window12 \ --swin_type base \ --pretrained_backbone /data2/projects/chaeyun/LAVT-RIS/pretrained_weights/swin_base_patch4_window12_384_22k.pth \ --resume /data2/projects/chaeyun/RIS-DMMI/experiments/dmmi_gref_google_bs12_repro/model_best_dmmi_gref_google_bs12_repro.pth \ --epochs 40 \ --img_size 480 # sbatch train_repro.sh ./experiments/dmmi_refzom_bs12_repro dmmi_refzom_bs12_repro # sbatch train_repro.sh ./experiments/dmmi_gref_google_bs12_repro dmmi_gref_google_bs12_repro # /data2/projects/chaeyun/RIS-DMMI/experiments/dmmi_gref_google_bs12_repro/model_best_dmmi_gref_google_bs12_repro.pth # /data2/projects/chaeyun/RIS-DMMI/experiments/dmmi_refzom_bs12_repro/model_best_dmmi_refzom_bs12_repro.pth