#!/bin/bash #SBATCH --job-name=dbs12-tlr #SBATCH --partition=a6000 #SBATCH --gres=gpu:2 #SBATCH --time=12-00:00:00 # d-hh:mm:ss, job time limit #SBATCH --mem=60000 # cpu memory size #SBATCH --cpus-per-task=6 # Job configuration LOG_NAME=$6 LOG_FILE="./trainlog/${LOG_NAME}.log" GPUS=2 OUTPUT_DIR=$1 EXP_NAME=$2 MARGIN=$3 TEMP=$4 MODE=$5 MASTER_PORT=$7 # Environment setup module purge module load cuda/11.8 eval "$(conda shell.bash hook)" conda activate risall cd /data2/projects/chaeyun/RIS-DMMI export NCCL_P2P_DISABLE=1 export NVIDIA_TF32_OVERRIDE=0 # Run the training script torchrun \ --nproc_per_node=$GPUS \ --master_port=$MASTER_PORT \ train_rev_textlr.py \ --model dmmi_swin_hardpos_only \ --dataset refcocog \ --splitBy umd \ --output_dir ${OUTPUT_DIR} \ --model_id ${EXP_NAME} \ --batch-size 6 \ --lr 0.00005 \ --wd 1e-2 \ --window12 \ --swin_type base \ --pretrained_backbone /data2/projects/chaeyun/LAVT-RIS/pretrained_weights/swin_base_patch4_window12_384_22k.pth \ --epochs 40 \ --img_size 480 \ --metric_learning \ --margin_value ${MARGIN} \ --temperature ${TEMP} \ --metric_mode ${MODE} \ --exclude_multiobj \ 2>&1 | tee $LOG_FILE # sbatch train_ace_bash_tlr.sh ./experiments/dmmi_grefu_ace_/gref_m10_tmp007_lrh_bs12 gref_m10_tmp007_lrh_bs12 10 0.05 hardpos_only dmmi_ACE_gref_m10_tmp007_lrh_bs12 8236