""" Ref-YoutubeVOS data loader """ from pathlib import Path import torch from torch.autograd.grad_mode import F from torch.utils.data import Dataset import datasets.transforms_video as T import os from PIL import Image import json import numpy as np import random from datasets.categories import ytvos_category_dict as category_dict class YTVOSDataset(Dataset): """ A dataset class for the Refer-Youtube-VOS dataset which was first introduced in the paper: "URVOS: Unified Referring Video Object Segmentation Network with a Large-Scale Benchmark" (see https://link.springer.com/content/pdf/10.1007/978-3-030-58555-6_13.pdf). The original release of the dataset contained both 'first-frame' and 'full-video' expressions. However, the first dataset is not publicly available anymore as now only the harder 'full-video' subset is available to download through the Youtube-VOS referring video object segmentation competition page at: https://competitions.codalab.org/competitions/29139 Furthermore, for the competition the subset's original validation set, which consists of 507 videos, was split into two competition 'validation' & 'test' subsets, consisting of 202 and 305 videos respectively. Evaluation can currently only be done on the competition 'validation' subset using the competition's server, as annotations were publicly released only for the 'train' subset of the competition. """ def __init__(self, img_folder: Path, ann_file: Path, transforms, return_masks: bool, num_frames: int, max_skip: int): self.img_folder = img_folder self.ann_file = ann_file self._transforms = transforms self.return_masks = return_masks # not used self.num_frames = num_frames self.max_skip = max_skip # create video meta data self.prepare_metas() print('\n video num: ', len(self.videos), ' clip num: ', len(self.metas)) print('\n') def prepare_metas(self): # read object information with open(os.path.join(str(self.img_folder), 'meta.json'), 'r') as f: subset_metas_by_video = json.load(f)['videos'] # read expression data with open(str(self.ann_file), 'r') as f: subset_expressions_by_video = json.load(f)['videos'] self.videos = list(subset_expressions_by_video.keys()) self.metas = [] skip_vid_count = 0 for vid in self.videos: vid_meta = subset_metas_by_video[vid] vid_data = subset_expressions_by_video[vid] vid_frames = sorted(vid_data['frames']) vid_len = len(vid_frames) if vid_len < 11: #print(f"Too short video: {vid} with frame length {vid_len}") skip_vid_count += 1 continue for exp_id, exp_dict in vid_data['expressions'].items(): # Exclude start_idx (0, 1) and end_idx (vid_len-1, vid_len-2) start_idx , end_idx = 2, vid_len-2 bin_size = (end_idx - start_idx) // 4 bins = [] for i in range(4): bin_start = start_idx + i * bin_size bin_end = bin_start + bin_size if i < 3 else end_idx bins.append((bin_start, bin_end)) # Random sample one frame from each bin sample_indx = [] for start_idx, end_idx in bins: sample_indx.append(random.randint(start_idx, end_idx - 1)) sample_indx.sort() # Ensure indices are in order for frame_id in sample_indx: meta = { 'video': vid, 'exp': exp_dict['exp'], 'obj_id': int(exp_dict['obj_id']), 'frames': vid_frames, 'frame_id' : frame_id, 'sample_frames_id' : sample_indx, 'bins': bins, 'category': vid_meta['objects'][exp_dict['obj_id']]['category'] } self.metas.append(meta) print(skip_vid_count) @staticmethod def bounding_box(img): rows = np.any(img, axis=1) cols = np.any(img, axis=0) rmin, rmax = np.where(rows)[0][[0, -1]] cmin, cmax = np.where(cols)[0][[0, -1]] return rmin, rmax, cmin, cmax # y1, y2, x1, x2 def __len__(self): return len(self.metas) def __getitem__(self, idx): instance_check = False while not instance_check: meta = self.metas[idx] # dict video, exp, obj_id, category, frames, frame_id, sample_frames_id, bins = \ meta['video'], meta['exp'], meta['obj_id'], meta['category'], meta['frames'], metas['frame_id'], metas['sample_frames_id'], meta['bins'] # clean up the caption exp = " ".join(exp.lower().split()) category_id = category_dict[category] vid_len = len(frames) # num_frames = self.num_frames # read frames and masks imgs, labels, boxes, masks, valid = [], [], [], [], [] for frame_indx in sample_frames_id: frame_name = frames[frame_indx] img_path = os.path.join(str(self.img_folder), 'JPEGImages', video, frame_name + '.jpg') mask_path = os.path.join(str(self.img_folder), 'Annotations', video, frame_name + '.png') img = Image.open(img_path).convert('RGB') mask = Image.open(mask_path).convert('P') # create the target label = torch.tensor(category_id) mask = np.array(mask) mask = (mask==obj_id).astype(np.float32) # 0,1 binary if (mask > 0).any(): y1, y2, x1, x2 = self.bounding_box(mask) box = torch.tensor([x1, y1, x2, y2]).to(torch.float) valid.append(1) else: # some frame didn't contain the instance box = torch.tensor([0, 0, 0, 0]).to(torch.float) valid.append(0) mask = torch.from_numpy(mask) # append imgs.append(img) labels.append(label) masks.append(mask) boxes.append(box) # transform w, h = img.size labels = torch.stack(labels, dim=0) boxes = torch.stack(boxes, dim=0) boxes[:, 0::2].clamp_(min=0, max=w) boxes[:, 1::2].clamp_(min=0, max=h) masks = torch.stack(masks, dim=0) target = { 'frames_idx': torch.tensor(sample_frames_id), # [T,] 'labels': labels, # [T,] 'boxes': boxes, # [T, 4], xyxy 'masks': masks, # [T, H, W] 'valid': torch.tensor(valid), # [T,] 'caption': exp, 'orig_size': torch.as_tensor([int(h), int(w)]), 'size': torch.as_tensor([int(h), int(w)]) } # "boxes" normalize to [0, 1] and transform from xyxy to cxcywh in self._transform if self._transforms: imgs, target = self._transforms(imgs, target) imgs = torch.stack(imgs, dim=0) # [T, 3, H, W] else: imgs = np.array(imgs) imgs = torch.tensor(imgs.transpose(0, 3, 1, 2)) # FIXME: handle "valid", since some box may be removed due to random crop if torch.any(target['valid'] == 1): # at leatst one instance instance_check = True else: idx = random.randint(0, self.__len__() - 1) return imgs, target def make_coco_transforms(image_set, max_size=640): normalize = T.Compose([ T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) scales = [288, 320, 352, 392, 416, 448, 480, 512] if image_set == 'train': return T.Compose([ T.RandomHorizontalFlip(), T.PhotometricDistort(), T.RandomSelect( T.Compose([ T.RandomResize(scales, max_size=max_size), T.Check(), ]), T.Compose([ T.RandomResize([400, 500, 600]), T.RandomSizeCrop(384, 600), T.RandomResize(scales, max_size=max_size), T.Check(), ]) ), normalize, ]) # we do not use the 'val' set since the annotations are inaccessible if image_set == 'val': return T.Compose([ T.RandomResize([360], max_size=640), normalize, ]) raise ValueError(f'unknown {image_set}') def build(image_set, args): root = Path(args.ytvos_path) assert root.exists(), f'provided YTVOS path {root} does not exist' PATHS = { "train": (root / "train", root / "meta_expressions" / "train" / "meta_expressions.json"), "val": (root / "valid", root / "meta_expressions" / "valid" / "meta_expressions.json"), # not used actually } img_folder, ann_file = PATHS[image_set] # dataset = YTVOSDataset(img_folder, ann_file, transforms=make_coco_transforms(image_set, max_size=args.max_size), return_masks=args.masks, # num_frames=args.num_frames, max_skip=args.max_skip) dataset = YTVOSDataset(img_folder, ann_file, transforms=None, return_masks=args.masks, num_frames=args.num_frames, max_skip=args.max_skip) return dataset