""" Utilities for bounding box manipulation and GIoU. """ import torch from torchvision.ops.boxes import box_area def clip_iou(boxes1,boxes2): area1 = box_area(boxes1) area2 = box_area(boxes2) lt = torch.max(boxes1[:, :2], boxes2[:, :2]) rb = torch.min(boxes1[:, 2:], boxes2[:, 2:]) wh = (rb - lt).clamp(min=0) inter = wh[:,0] * wh[:,1] union = area1 + area2 - inter iou = (inter + 1e-6) / (union+1e-6) return iou def multi_iou(boxes1, boxes2): lt = torch.max(boxes1[...,:2], boxes2[...,:2]) rb = torch.min(boxes1[...,2:], boxes2[...,2:]) wh = (rb - lt).clamp(min=0) wh_1 = boxes1[...,2:] - boxes1[...,:2] wh_2 = boxes2[...,2:] - boxes2[...,:2] inter = wh[...,0] * wh[...,1] union = wh_1[...,0] * wh_1[...,1] + wh_2[...,0] * wh_2[...,1] - inter iou = (inter + 1e-6) / (union + 1e-6) return iou def box_cxcywh_to_xyxy(x): x_c, y_c, w, h = x.unbind(-1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=-1) def box_xyxy_to_cxcywh(x): x0, y0, x1, y1 = x.unbind(-1) b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)] return torch.stack(b, dim=-1) # modified from torchvision to also return the union def box_iou(boxes1, boxes2): area1 = box_area(boxes1) area2 = box_area(boxes2) lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] wh = (rb - lt).clamp(min=0) # [N,M,2] inter = wh[:, :, 0] * wh[:, :, 1] # [N,M] union = area1[:, None] + area2 - inter iou = (inter+1e-6) / (union+1e-6) return iou, union def generalized_box_iou(boxes1, boxes2): """ Generalized IoU from https://giou.stanford.edu/ The boxes should be in [x0, y0, x1, y1] format Returns a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2) """ # degenerate boxes gives inf / nan results # so do an early check assert (boxes1[:, 2:] >= boxes1[:, :2]).all() assert (boxes2[:, 2:] >= boxes2[:, :2]).all() iou, union = box_iou(boxes1, boxes2) lt = torch.min(boxes1[:, None, :2], boxes2[:, :2]) rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) wh = (rb - lt).clamp(min=0) # [N,M,2] area = wh[:, :, 0] * wh[:, :, 1] return iou - ((area - union) + 1e-6) / (area + 1e-6) def masks_to_boxes(masks): """Compute the bounding boxes around the provided masks The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions. Returns a [N, 4] tensors, with the boxes in xyxy format """ if masks.numel() == 0: return torch.zeros((0, 4), device=masks.device) h, w = masks.shape[-2:] y = torch.arange(0, h, dtype=torch.float) x = torch.arange(0, w, dtype=torch.float) y, x = torch.meshgrid(y, x) x_mask = (masks * x.unsqueeze(0)) x_max = x_mask.flatten(1).max(-1)[0] x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0] y_mask = (masks * y.unsqueeze(0)) y_max = y_mask.flatten(1).max(-1)[0] y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0] return torch.stack([x_min, y_min, x_max, y_max], 1)