import os import torch.utils.data as data import torch import numpy as np from PIL import Image import pdb import copy from random import choice from bert.tokenization_bert import BertTokenizer from textblob import TextBlob from refer.refer import REFER from args import get_parser # Dataset configuration initialization parser = get_parser() args = parser.parse_args() class ReferDataset(data.Dataset): def __init__(self, args, image_transforms=None, target_transforms=None, split='train', eval_mode=False): self.classes = [] self.image_transforms = image_transforms self.target_transform = target_transforms self.split = split self.refer = REFER(args.refer_data_root, args.dataset, args.splitBy) self.dataset_type = args.dataset self.max_tokens = 20 ref_ids = self.refer.getRefIds(split=self.split) self.img_ids = self.refer.getImgIds() all_imgs = self.refer.Imgs self.imgs = list(all_imgs[i] for i in self.img_ids) self.ref_ids = ref_ids self.input_ids = [] self.input_ids_masked = [] self.attention_masks = [] self.tokenizer = BertTokenizer.from_pretrained(args.bert_tokenizer) self.eval_mode = eval_mode for r in ref_ids: ref = self.refer.Refs[r] sentences_for_ref = [] sentences_for_ref_masked = [] attentions_for_ref = [] for i, (el, sent_id) in enumerate(zip(ref['sentences'], ref['sent_ids'])): sentence_raw = el['raw'] attention_mask = [0] * self.max_tokens padded_input_ids = [0] * self.max_tokens padded_input_ids_masked = [0] * self.max_tokens blob = TextBlob(sentence_raw.lower()) chara_list = blob.tags mask_ops = [] mask_ops1 = [] for word_i, (word_now, chara) in enumerate(chara_list): if (chara == 'NN' or chara == 'NNS') and word_i < 19 and word_now.lower(): mask_ops.append(word_i) mask_ops1.append(word_now) mask_ops2 = self.get_adjacent_word(mask_ops) input_ids = self.tokenizer.encode(text=sentence_raw, add_special_tokens=True) # truncation of tokens input_ids = input_ids[:self.max_tokens] padded_input_ids[:len(input_ids)] = input_ids attention_mask[:len(input_ids)] = [1]*len(input_ids) if len(mask_ops) == 0: attention_remask = attention_mask input_ids_masked = input_ids else: could_mask = choice(mask_ops2) input_ids_masked = copy.deepcopy(input_ids) for i in could_mask: input_ids_masked[i + 1] = 0 padded_input_ids_masked[:len(input_ids_masked)] = input_ids_masked sentences_for_ref.append(torch.tensor(padded_input_ids).unsqueeze(0)) sentences_for_ref_masked.append(torch.tensor(padded_input_ids_masked).unsqueeze(0)) attentions_for_ref.append(torch.tensor(attention_mask).unsqueeze(0)) self.input_ids.append(sentences_for_ref) self.input_ids_masked.append(sentences_for_ref_masked) self.attention_masks.append(attentions_for_ref) def get_classes(self): return self.classes def __len__(self): return len(self.ref_ids) def get_adjacent_word(self, mask_list): output_mask_list = [] length = len(mask_list) i = 0 while i < length: begin_pos = i while i+1 < length and mask_list[i+1] == mask_list[i] + 1: i += 1 end_pos = i+1 output_mask_list.append(mask_list[begin_pos:end_pos]) i = end_pos return output_mask_list def __getitem__(self, index): this_ref_id = self.ref_ids[index] this_img_id = self.refer.getImgIds(this_ref_id) this_img = self.refer.Imgs[this_img_id[0]] img = Image.open(os.path.join(self.refer.IMAGE_DIR, this_img['file_name'])).convert("RGB") ref = self.refer.loadRefs(this_ref_id) if self.dataset_type == 'ref_zom': source_type = ref[0]['source'] else: source_type = 'one' ref_mask = np.array(self.refer.getMask(ref[0])['mask']) annot = np.zeros(ref_mask.shape) annot[ref_mask == 1] = 1 annot = Image.fromarray(annot.astype(np.uint8), mode="P") if self.image_transforms is not None: if self.split == 'train': img, target = self.image_transforms(img, annot) elif self.split == 'val': img, target = self.image_transforms(img, annot) else: img, target = self.image_transforms(img, annot) if self.eval_mode: embedding = [] embedding_masked = [] att = [] for s in range(len(self.input_ids[index])): e = self.input_ids[index][s] a = self.attention_masks[index][s] embedding.append(e.unsqueeze(-1)) embedding_masked.append(e.unsqueeze(-1)) att.append(a.unsqueeze(-1)) tensor_embeddings = torch.cat(embedding, dim=-1) tensor_embeddings_masked = torch.cat(embedding_masked, dim=-1) attention_mask = torch.cat(att, dim=-1) else: choice_sent = np.random.choice(len(self.input_ids[index])) tensor_embeddings = self.input_ids[index][choice_sent] tensor_embeddings_masked = self.input_ids_masked[index][choice_sent] attention_mask = self.attention_masks[index][choice_sent] return img, target, source_type, tensor_embeddings, tensor_embeddings_masked, attention_mask