""" Various positional encodings for the transformer. Modified from DETR (https://github.com/facebookresearch/detr) """ import math import torch from torch import nn from util.misc import NestedTensor # dimension == 1 class PositionEmbeddingSine1D(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__(self, num_pos_feats=256, temperature=10000, normalize=False, scale=None): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, tensor_list: NestedTensor): x = tensor_list.tensors # [B, C, T] mask = tensor_list.mask # [B, T] assert mask is not None not_mask = ~mask x_embed = not_mask.cumsum(1, dtype=torch.float32) # [B, T] if self.normalize: eps = 1e-6 x_embed = x_embed / (x_embed[:, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, None] / dim_t # [B, T, C] # n,c,t pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2) pos = pos_x.permute(0, 2, 1) # [B, C, T] return pos # dimension == 2 class PositionEmbeddingSine2D(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, tensor_list: NestedTensor): x = tensor_list.tensors # [B, C, H, W] mask = tensor_list.mask # [B, H, W] assert mask is not None not_mask = ~mask y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) if self.normalize: eps = 1e-6 y_embed = (y_embed - 0.5) / (y_embed[:, -1:, :] + eps) * self.scale x_embed = (x_embed - 0.5) / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos # [B, C, H, W] # dimension == 3 class PositionEmbeddingSine3D(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__(self, num_pos_feats=64, num_frames=36, temperature=10000, normalize=False, scale=None): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize self.frames = num_frames if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, tensor_list: NestedTensor): x = tensor_list.tensors # [B*T, C, H, W] mask = tensor_list.mask # [B*T, H, W] n,h,w = mask.shape mask = mask.reshape(n//self.frames, self.frames,h,w) # [B, T, H, W] assert mask is not None not_mask = ~mask z_embed = not_mask.cumsum(1, dtype=torch.float32) # [B, T, H, W] y_embed = not_mask.cumsum(2, dtype=torch.float32) # [B, T, H, W] x_embed = not_mask.cumsum(3, dtype=torch.float32) # [B, T, H, W] if self.normalize: eps = 1e-6 z_embed = z_embed / (z_embed[:, -1:, :, :] + eps) * self.scale y_embed = y_embed / (y_embed[:, :, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) # dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, :, None] / dim_t # [B, T, H, W, c] pos_y = y_embed[:, :, :, :, None] / dim_t pos_z = z_embed[:, :, :, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, :, :, 0::2].sin(), pos_x[:, :, :, :, 1::2].cos()), dim=5).flatten(4) # [B, T, H, W, c] pos_y = torch.stack((pos_y[:, :, :, :, 0::2].sin(), pos_y[:, :, :, :, 1::2].cos()), dim=5).flatten(4) pos_z = torch.stack((pos_z[:, :, :, :, 0::2].sin(), pos_z[:, :, :, :, 1::2].cos()), dim=5).flatten(4) pos = torch.cat((pos_z, pos_y, pos_x), dim=4).permute(0, 1, 4, 2, 3) # [B, T, C, H, W] return pos def build_position_encoding(args): # build 2D position encoding N_steps = args.hidden_dim // 2 # 256 / 2 = 128 if args.position_embedding in ('v2', 'sine'): # TODO find a better way of exposing other arguments position_embedding = PositionEmbeddingSine2D(N_steps, normalize=True) else: raise ValueError(f"not supported {args.position_embedding}") return position_embedding